• 제목/요약/키워드: integral transforms

검색결과 128건 처리시간 0.023초

전기 절연 균열을 갖는 압전 세라믹 스트립의 세기 계수 결정 (Determination of Intensity Factors in Piezoelectric Ceramic Strip with Impermeable Crack)

  • 권종호;권순만;신정우;이강용
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1601-1607
    • /
    • 2000
  • Using the theory of linear piezoelectricity, we consider the problem of piezoelectric ceramic infinite strip containing a finite crack with free surface traction and surface charge under anti-plane shear. The crack is symmetrically parallel to the edges of infinite strip. Fourier transforms are used to reduce the problem to two pairs of dual integral equations, which are then expressed in terms of Fredholm integral equations of the second kind. Numerical results for PZT-5H ceramic are obtained and discussed.

FRACTIONAL CALCULUS AND INTEGRAL TRANSFORMS OF THE M-WRIGHT FUNCTION

  • KHAN, N.U.;KASHMIN, T.;KHAN, S.W.
    • Journal of applied mathematics & informatics
    • /
    • 제37권5_6호
    • /
    • pp.341-349
    • /
    • 2019
  • This paper is concerned to investigate M-Wright function, which was earlier known as transcendental function of the Wright type. M-Wright function is a special case of the Wright function given by British mathematician (E.Maitland Wright) in 1933. We have explored the cosequences of Riemann-Liouville Integral and Differential operators on M-Wright function. We have also evaluated integral transforms of the M-Wright function.

ANALYTIC PROPERTIES OF THE q-VOLKENBORN INTEGRAL ON THE RING OF p-ADIC INTEGERS

  • Kim, Min-Soo;Son, Jin-Woo
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.1-12
    • /
    • 2007
  • In this paper, we consider the q-Volkenborn integral of uniformly differentiable functions on the p-adic integer ring. By using this integral, we obtain the generating functions of twisted q-generalized Bernoulli numbers and polynomials. We find some properties of these numbers and polynomials.

GENERALIZED CONDITIONAL INTEGRAL TRANSFORMS, CONDITIONAL CONVOLUTIONS AND FIRST VARIATIONS

  • Kim, Bong Jin;Kim, Byoung Soo
    • Korean Journal of Mathematics
    • /
    • 제20권1호
    • /
    • pp.1-18
    • /
    • 2012
  • We study various relationships that exist among generalized conditional integral transform, generalized conditional convolution and generalized first variation for a class of functionals defined on K[0, T], the space of complex-valued continuous functions on [0, T] which vanish at zero.

ON THE SPECIAL VALUES OF TORNHEIM'S MULTIPLE SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.305-315
    • /
    • 2015
  • Recently, Jianxin Liu, Hao Pan and Yong Zhang in [On the integral of the product of the Appell polynomials, Integral Transforms Spec. Funct. 25 (2014), no. 9, 680-685] established an explicit formula for the integral of the product of several Appell polynomials. Their work generalizes all the known results by previous authors on the integral of the product of Bernoulli and Euler polynomials. In this note, by using a special case of their formula for Euler polynomials, we shall provide several reciprocity relations between the special values of Tornheim's multiple series.

A BANACH ALGEBRA OF SERIES OF FUNCTIONS OVER PATHS

  • Cho, Dong Hyun;Kwon, Mo A
    • Korean Journal of Mathematics
    • /
    • 제27권2호
    • /
    • pp.445-463
    • /
    • 2019
  • Let C[0, T] denote the space of continuous real-valued functions on [0, T]. On the space C[0, T], we introduce a Banach algebra of series of functions which are generalized Fourier-Stieltjes transforms of measures of finite variation on the product of simplex and Euclidean space. We evaluate analytic Feynman integrals of the functions in the Banach algebra which play significant roles in the Feynman integration theory and quantum mechanics.

SOME CLASSES OF INTEGRAL EQUATIONS OF CONVOLUTIONS-PAIR GENERATED BY THE KONTOROVICH-LEBEDEV, LAPLACE AND FOURIER TRANSFORMS

  • Tuan, Trinh
    • 대한수학회논문집
    • /
    • 제36권3호
    • /
    • pp.485-494
    • /
    • 2021
  • In this article, we prove the existence of a solution to some classes of integral equations of generalized convolution type generated by the Kontorovich-Lebedev (K) transform, the Laplace (𝓛) transform and the Fourier (F) transform in some appropriate function spaces and represent it in a closed form.

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.