DOI QR코드

DOI QR Code

Integral Transforms of Square Integrable Functionals on Yeh-Wiener Space

  • Kim, Byoung-Soo (School of Liberal Arts, Seoul National University of Technology)
  • Received : 2008.01.24
  • Accepted : 2008.04.01
  • Published : 2009.03.31

Abstract

We give a necessary and sufficient condition that a square integrable functional F(x) on Yeh-Wiener space has an integral transform $\hat{F}_{{\alpha},{\beta}}F(x)$ which is also square integrable. This extends the result by Kim and Skoug for functional F(x) in $L_2(C_0[0,T])$.

Keywords

References

  1. E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc., 30(1984), 305-321. https://doi.org/10.1112/jlms/s2-30.2.305
  2. R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J., 12(1945), 485-488. https://doi.org/10.1215/S0012-7094-45-01243-9
  3. R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J., 12(1945), 489-507. https://doi.org/10.1215/S0012-7094-45-01244-0
  4. R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to $L_2$ over the space C, Duke Math. J., 14(1947), 99-107. https://doi.org/10.1215/S0012-7094-47-01409-9
  5. R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J., 23(1976), 1-30. https://doi.org/10.1307/mmj/1029001617
  6. K. S. Chang, B. S. Kim and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener spaces, Numer. Funct. Anal. Optim., 21(2000), 97-105. https://doi.org/10.1080/01630560008816942
  7. E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, Vol. 1 (3rd ed.), Dover, New York, 1957.
  8. G. W. Johnson and D. L. Skoug, A stochastic integration formula for two-parameter Wiener$\times$two-parameter Wiener space, SIAM J. Math. Anal., 18(1987), 919-932. https://doi.org/10.1137/0518070
  9. B. J. Kim, B. S. Kim and D. Skoug, Integral transforms, convolution products, and first variations, Internat. J. Math. Math. Sci., 2004(2004), 579-598. https://doi.org/10.1155/S0161171204305260
  10. B. J. Kim, B. S. Kim and I. Yoo, Integral transforms of functionals on a function space of two variables, submitted.
  11. B. S. Kim and D. Skoug, Integral transforms of functionals in $L_2(C_0[0,T])$, Rocky Mountain J. Math., 33(2003), 1379-1393. https://doi.org/10.1216/rmjm/1181075469
  12. Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal., 47(1982), 153-164. https://doi.org/10.1016/0022-1236(82)90103-3
  13. D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math., 34(2004), 1147-1176. https://doi.org/10.1216/rmjm/1181069848
  14. J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc., 95(1960), 433-450. https://doi.org/10.1090/S0002-9947-1960-0125433-1
  15. J. Yeh, Orthogonal developments of functionals and related theroems in the Wiener space of functions of two variables, Pacific J. Math., 13(1963), 1427-1436. https://doi.org/10.2140/pjm.1963.13.1427
  16. J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1983.

Cited by

  1. RELATIONSHIPS AMONG FOURIER-YEH-FEYNMAN TRANSFORM, CONVOLUTION AND THE FIRST VARIATION ON YEH-WIENER SPACE vol.33, pp.2, 2011, https://doi.org/10.5831/HMJ.2011.33.2.207