• Title/Summary/Keyword: integral identities

Search Result 48, Processing Time 0.023 seconds

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

A NOTE ON THE WEIGHTED q-BERNOULLI NUMBERS AND THE WEIGHTED q-BERNSTEIN POLYNOMIALS

  • Dolgy, D.V.;Kim, T.
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.519-527
    • /
    • 2011
  • Recently, the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$ are introduced in [3]: In this paper we give some interesting p-adic integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials related to the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$. From those integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials, we can derive some identities on the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$.

AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES

  • Choi, Junesang;Parmar, Rakesh K.;Saxena, Ram K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1951-1967
    • /
    • 2017
  • We aim to introduce a further extension of a family of the extended Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate several interesting properties of the extended function such as its integral representations which provide extensions of various earlier corresponding results of two and one variables, its summation formula, its Mellin-Barnes type contour integral representations, its computational representation and fractional derivative formulas. A multi-parameter extension of the extended Hurwitz-Lerch Zeta function of two variables is also introduced. Relevant connections of certain special cases of the main results presented here with some known identities are pointed out.

ON HIGHER ORDER (p, q)-FROBENIUS-GENOCCHI NUMBERS AND POLYNOMIALS

  • KHAN, WASEEM A.;KHAN, IDREES A.;KANG, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.295-305
    • /
    • 2019
  • In the present paper, we introduce (p, q)-Frobenius-Genocchi numbers and polynomials and investigate some basic identities and properties for these polynomials and numbers including addition theorems, difference equations, derivative properties, recurrence relations and so on. Then, we provide integral representations, implicit and explicit formulas and relations for these polynomials and numbers. We consider some relationships for (p, q)-Frobenius-Genocchi polynomials of order ${\alpha}$ associated with (p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi polynomials.

Transnational Identity and Regional Integration

  • Lamasheva, Yulia
    • Asia-Pacific Journal of Business
    • /
    • v.1 no.1
    • /
    • pp.73-95
    • /
    • 2010
  • European integration is characterized by the development of a transnational European identity, which is considered an integral part of the process. Northeast Asia has no similar projects to address the common identity issue, although cooperation is highly valued there as well. Identity and cooperation both require interdisciplinary approaches combining social psychology, international relations theory and international economics. This article considers the problems of applying existing studies on cooperation and identity as well as the European experience (with the Baltic Sea example) to the case of Northeast Asia. Transnational identities promote cooperation beyond the limits of rationalistic game theory, if countries of the region can define their identities and interests, commit to common goals, create shared discourses and reach a balance between nationalism and internationalism. In view of proposed negotiations on the free trade area between China, Korea and Japan and ongoing discussions about a possibility of introducing a common currency (ACU) it can be crucial to consider the importance of identity building as early as possible, before regional integration meets a stumbling block of egoistic rationality that is a problem in any model of cooperation.

  • PDF

CERTAIN IDENTITIES ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC SERIES AND BINOMIAL COEFFICIENTS

  • Lee, Keum-Sik;Cho, Young-Joon;Choi, June-Sang
    • The Pure and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 2001
  • The main object of this paper is to present a transformation formula for a finite series involving $_3F_2$ and some identities associated with the binomial coefficients by making use of the theory of Legendre polynomials $P_{n}$(x) and some summation theorems for hypergeometric functions $_pF_q$. Some integral formulas are also considered.

  • PDF

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR THE KAMPÉ DE FÉRIET FUNCTION F0:3;32:0;0 [x, y]

  • Choi, Junesang;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.679-689
    • /
    • 2010
  • By developing and using certain operators like those initiated by Burchnall-Chaundy, the authors aim at investigating several decomposition formulas associated with the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y]. For this purpose, many operator identities involving inverse pairs of symbolic operators are constructed. By employing their decomposition formulas, they also present a new group of integral representations of Eulerian type for the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y], some of which include several hypergeometric functions such as $_2F_1$, $_3F_2$, an Appell function $F_3$, and the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions $F_{2:0;0}^{0:3;3}$ and $F_{1:0;1}^{0:2;3}$.