• 제목/요약/키워드: inspection machine

Search Result 603, Processing Time 0.023 seconds

Network Classification of P2P Traffic with Various Classification Methods (다양한 분류기법을 이용한 네트워크상의 P2P 데이터 분류실험)

  • Han, Seokwan;Hwang, Jinsoo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Security has become an issue due to the rapid increases in internet traffic data network. Especially P2P traffic data poses a great challenge to network systems administrators. Preemptive measures are necessary for network quality of service(QoS) and efficient resource management like blocking suspicious traffic data. Deep packet inspection(DPI) is the most exact way to detect an intrusion but it may pose a private security problem that requires time. We used several machine learning methods to compare the performance in classifying network traffic data accurately over time. The Random Forest method shows an excellent performance in both accuracy and time.

A Useful Technique for Measuring the 3-dimensional Positioning of a Rotating Object (회전체의 효과적인 3차원 위치오차 측정방법)

  • Lee, Eung-Seok;Wi, Hyeon-Gon;Jeong, Ju-No
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.918-924
    • /
    • 1997
  • A method for measuring the accuracy of rotating objects was studied. Rotating axis errors are significant; such as the spindle error of a manufacturing machine which results in the surface roughness of machined work pieces. Three capacitance type displacement sensors were used to measure the rotating master ball position. The sensors were mounted to the three orthogonal points on the spindle axis. The measurement data were analyzed and shown for rotating spindle accuracy, not only for average roundness error but also for spindle volumetric positional error during the revolutions. This method is simple and economical for industrial field use with regular inspection of rotating machines using portable equipment. Measuring and analyzing time using this method takes only a couple of hours. This method can also measure microscopic amplitude and 3-dimensional direction of vibrating objects.

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

Design of an efficient learning-based face detection system (학습기반 효율적인 얼굴 검출 시스템 설계)

  • Kim Hyunsik;Kim Wantae;Park Byungjoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.

A machine-vision based inspection system for non-transparent and high-reflectance substrate (머신 비전을 이용한 불투명/고반사율 기판 검사 시스템)

  • Yeo, Kyeong-Min;Seo, Jung-Woo;Lee, Suk-Won;Yi, June-Ho
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.369-372
    • /
    • 2010
  • 평판 디스플레이(flat panel display)의 크기가 커짐에 따라 다양한 기판을 이용한 제조 방법이 개발되고 있다. 디스플레이 제조 공정 중 기판의 결함을 찾아서 분류하는 검사 시스템은 최종 제품의 품질을 결정하는 매우 중요한 부분이다. 본 연구는 머신비전 기술을 이용하여 불투명하고 반사율이 높은 기판 표면의 결함을 찾아내고, 이 결함을 스크래치(scratch), 흑결함(dark defect), 백결함(white defect)으로 분류하는 장치를 구현하는데 목적이 있다. 이를 구현하기 위해 본 논문에서는 정밀 스테이지(stage)와 라인 카메라(line CCD camera)을 이용한 광학계를 활용하여 검사 시스템을 구현하였다. 구축된 시스템을 이용하여 취득한 이미지를 12 개의 영역으로 등분하여 각각의 국부 영역에 대한 문턱값 연산(thresholding)을 적용함으로써 조명의 불균일을 의한 검출 에러율을 획기적으로 낮추었다. 간단한 컴퓨터비전 알고리듬의 채용으로도 검사 시스템의 구현이 가능함을 보였다.

Algorithm for Discrimination of Brown Rice Kernels Using Machine Vision

  • C.S. Hwang;Noh, S.H.;Lee, J.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.823-833
    • /
    • 1996
  • An ultimate purpose of this study is to develop an automatic brown rice quality inspection system using image processing technique. In this study emphasis was put on developing an algorithm for discriminating the brown rice kernels depending on their external quality with a color image processing system equipped with an adaptor for magnifying the input image and optical fiber for oblique illumination. Primarily , geometrical and optical features of sample images were analyzed with unhulled paddy and various brown rice kernel samples such as sound, cracked, green-transparent , green-opaque, colored, white-opaque and brokens. Secondary, an algorithm for discrimination of the rice kernels in static state was developed on the basis of the geometrical and optical parameters screened by a statistical analysis(STEPWISE and DISCRIM Procedure, SAS ver.6). Brown rice samples could be discriminated by the algorithm developed in this study with an accuracy of 90% to 96% for the sound , cracked, colored, broken and unhulled , about 81% for the green-transparent and the white-opaque and about 75% for the green-opaque, respectively. A total computing time required for classification was about 100 seconds/1000 kernels with the PC 80486-DX2, 66MHz.

  • PDF

Analysis on the Falling Risk of Building Electric Shutter and Reduction Measures (건축물 전동셔터 추락 리스크 분석 및 저감 방안)

  • Jung, Young-Min;Bang, Hong-Soon;Kim, Ok-Kyue
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.295-296
    • /
    • 2021
  • With the recent diversification and complication of buildings, the functions of building are also developing. As much as the development of buildings, the machine or equipment used for them is also developing. Thus, all sorts of domestic/foreign industrial facilities and fire stations in the whole nation are using the electric shutter that could meet the insulation just like the exterior wall of general buildings, for bringing-in/storage and crime prevention/fire prevention. Currently, various types of electric shutters are used. Such wrong operation and poor management are causing many panel-falling accidents. This study researched the reduction of electric shutter panel-falling risk by reviewing the domestic/foreign laws and standards, and researching the new safety equipment. First, the causes for falling and accident types were drawn by analyzing the cases of electric shutter accidents. After that, a checklist as the measures for reducing the falling of electric shutter in building was suggested by analyzing the items for the inspection of electric shutter.

  • PDF

A Preliminary Study of the Development of DNN-Based Prediction Model for Quality Management (DNN을 활용한 건설현장 품질관리 시스템 개발을 위한 기초연구)

  • Suk, Janghwan;Kwon, Woobin;Lee, Hak-Ju;Lee, Chanwoo;Cho, Hunhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.223-224
    • /
    • 2022
  • The occurrence of defect, one of the major risk elements, gives rise to construction delays and additional costs. Although construction companies generally prefer to use a method of identifying and classifying the causes of defects, a system for predicting the rise of defects becomes important matter to reduce this harmful issue. However, the currently used methods are kinds of reactive systems that are focused on the defects which occurred already, and there are few studies on the occurrence of defects with prediction systems. This paper is about preliminary study on the development of judgemental algorithm that informs us whether additional works related to defect issue are needed or not. Among machine learning techniques, deep neural network was utilized as prediction model which is a major component of algorithm. It is the most suitable model to be applied to the algorithm when there are 8 hidden layers and the average number of nodes in each hidden layer is 70. Ultimately, the algorithm can identify and defects that may arise in later and contribute to minimize defect frequency.

  • PDF

Deep learning of sweep signal for damage detection on the surface of concrete

  • Gao Shanga;Jun Chen
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.

UAV-based bridge crack discovery via deep learning and tensor voting

  • Xiong Peng;Bingxu Duan;Kun Zhou;Xingu Zhong;Qianxi Li;Chao Zhao
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.105-118
    • /
    • 2024
  • In order to realize tiny bridge crack discovery by UAV-based machine vision, a novel method combining deep learning and tensor voting is proposed. Firstly, the grid images of crack are detected and descripted based on SE-ResNet50 to generate feature points. Then, the probability significance map of crack image is calculated by tensor voting with feature points, which can define the direction and region of crack. Further, the crack detection anchor box is formed by non-maximum suppression from the probability significance map, which can improve the robustness of tiny crack detection. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method in the Xiangjiang-River bridge inspection. Compared with the original tensor voting algorithm, the proposed method has higher accuracy in the situation of only 1-2 pixels width crack and the existence of edge blur, crack discontinuity, which is suitable for UAV-based bridge crack discovery.