Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant No. 51978027).
References
- Bang, H., Min, J. and Jeon, H. (2021), "Deep learning-based concrete surface damage monitoring method using structured lights and depth camera", Sensors, 21(8), 2759. https://doi.org/10.3390/s21082759.
- Bhowmick, S., Nagarajaiah, S. and Veeraraghavan, A. (2020), "Vision and deep learning-based algorithms to detect and quantify cracks on concrete surfaces from UAV videos", Sensors, 20(21), 6299. https://doi.org/10.3390/s20216299.
- Bouvrie, J. (2006), Notes on Convolutional Neural Networks, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Carrion, A., Genoves, V., Gosalbez, J., Miralles, R. and Paya, J. (2017), "Ultrasonic signal modality: A novel approach for concrete damage evaluation", Cement Concrete Res., 101, 25-32. https://doi.org/10.1016/j.cemconres.2017.08.011.
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput. Aid. Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263.
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018). "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput. Aid. Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334.
- Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Health monitoring of civil infrastructure", Struct. Heal. Monit., 2(3), 257-267. https://doi.org/10.1177/1475921703036169.
- Chen, J.H., Su, M.C., Cao, R., Hsu, S.C. and Lu, J.C. (2017), "A self organizing map optimization based image recognition and processing model for bridge crack inspection", Autom. Constr., 73, 58-66. https://doi.org/10.1016/j.autcon.2016.08.033.
- Chen, R., Huang, X., Yang, L., Xu, X., Zhang, X. and Zhang, Y. (2019), "Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform", Comput. Ind., 106, 48-59. https://doi.org/10.1016/j.compind.2018.11.003.
- Cheng, C.C., Cheng. T.M. and Chiang, C.H. (2008), "Defect detection of concrete structures using both infrared thermography and elastic waves", Autom. Constr., 18(1), 87-92. https://doi.org/10.1016/j.autcon.2008.05.004.
- Choi, W. and Cha, Y.J. (2019) "SDDNet: Real-time crack segmentation", IEEE Trans. Ind. Electron., 67, 8016-8025. https://doi.org/10.1109/TIE.2019.2945265.
- Daubechies, I. (1990), "The wavelet transform, time-frequency localization and signal analysis", IEEE Trans. Inf. Theory, 36(5), 961-1005. https://doi.org/10.1109/18.57199.
- Dung, C.V. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Autom. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028.
- Haile, M.A., Zhu, E., Hsu, C. and Bradley, N. (2020), "Deep machine learning for detection of acoustic wave reflections", Struct. Heal. Monit., 19(5), 1340-1350. https://doi.org/10.1177/1475921719881642.
- Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R. (2012), "Improving neural networks by preventing co-adaptation of feature detectors", arXiv preprint arXiv:1207.0580.
- Ioffe, S. and Szegedy, C. (2015), "Batch normalization: Accelerating deep network training by reducing internal covariate shift", Proceedings of the 32nd International Conference on Machine Learning, Lille, France, July.
- Jang, K., Kim, N. and An, Y.K. (2019), "Deep learning-based autonomous concrete crack evaluation through hybrid image scanning", Struct. Heal. Monit., 18(5-6), 1722-1737. https://doi.org/10.1177/1475921718821719.
- Kang, D. and Cha, Y.J. (2018). "Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging", Comput. Aid. Civil Infrastr. Eng., 33(10), 885-902. https://doi.org/10.1111/mice.12375.
- Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020). "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Autom. Constr., 118, 103291. https://doi.org/10.1016/j.autcon.2020.103291.
- Kang, D.H. and Cha, Y.J. (2022). "Efficient attention-based deep encoder and decoder for automatic crack segmentation", Struct. Heal. Monit., 21(5), 2190-2205. https://doi.org/10.1177/14759217211053776.
- Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017), "ImageNet classification with deep convolutional neural networks", Commun. ACM., 60(6), 84-90. https://doi.org/10.1145/3065386.
- Lei, D., Yang, L., Xu, W., Zhang, P. and Huang, Z. (2017), "Experimental study on alarming of concrete micro-crack initiation based on wavelet packet analysis", Constr. Build. Mater., 149, 716-723. https://doi.org/10.1016/j.conbuildmat.2017.05.159.
- Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, June.
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, June.
- Miao, R., Gao, Y., Ge, L., Jiang, Z. and Zhang, J. (2019), "Online defect recognition of narrow overlap weld based on two-stage recognition model combining continuous wavelet transform and convolutional neural network", Comput. Ind., 112, 103115. https://doi.org/10.1016/j.compind.2019.07.005.
- Murphy, K.P. (2012), "Machine learning: A probabilistic perspective", MIT Press, Cambridge, MA, USA.
- Nair, V. and Hinton, G.E. (2010), "Rectified linear units improve Restricted Boltzmann machines", Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, June.
- Park, J. (2018), "Identification of damage in beam structures using flexural wave propagation characteristics", J. Sound Vib., 318(4-5), 820-829. https://doi.org/10.1016/j.jsv.2008.05.008.
- Park, S.E., Eem, S.H. and Jeon, H. (2020), "Concrete crack detection and quantification using deep learning and structured light", Constr. Build. Mater., 252, 119096. https://doi.org/10.1016/j.conbuildmat.2020.119096.
- Puri, N., Valero, E., Turkan, Y. and Bosche, F. (2018), "Assessment of compliance of dimensional tolerances in concrete slabs using TLS data and the 2D continuous wavelet transform", Autom. Constr., 94, 62-72. https://doi.org/10.1016/j.autcon.2018.06.004.
- Sercu, T. and Goel, V. (2016), "Advances in very deep convolutional neural networks for LVCSR", arXiv preprint arXiv:1604.01792.
- Xu, G., Liu, M., Jiang, Z., Soffker, D. and Shen, W. (2019), "Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning", Sensors, 19(5), 1088. https://doi.org/10.3390/s19051088.
- Yang, C. and Chen, J. (2019), "Fully noncontact nonlinear ultrasonic characterization of thermal damage in concrete and correlation with microscopic evidence of material cracking", Cement Concrete Res., 123, 105797. https://doi.org/10.1016/j.cemconres.2019.105797.
- Yang, Q., Shi, W., Chen, J. and Lin, W. (2020), "Deep convolution neural network-based transfer learning method for civil infrastructure crack detection", Autom. Constr., 116, 103199. https://doi.org/10.1016/j.autcon.2020.103199.
- Yu, L., He, S., Liu, X., Jiang, S. and Xiang, S. (2022), "Intelligent crack detection and quantification in the concrete bridge: A deep learning-assisted image processing approach", Adv. Civil Eng., 2022, 1-15. https://doi.org/10.1155/2022/1813821.
- Zeiler, M.D. and Fergus, R. (2013), "Stochastic pooling for regularization of deep convolutional neural networks", arXiv preprint arXiv:1301.3557.
- Zhao, B., Lei, D., Fu, J., Yang, L. and Xu, W. (2019), "Experimental study on micro-damage identification in reinforced concrete beam with wavelet packet and DIC method", Constr. Build. Mater., 210, 338-346. https://doi.org/10.1016/j.conbuildmat.2019.03.175.