Journal of the Society of Naval Architects of Korea
/
v.29
no.4
/
pp.114-131
/
1992
In the present work, a two-dimensional boundary-value problem for a large amplitude motion is treated as an initial-value problem by satisfying the exact body-boundary and nonlinear free-surface boundary conditions. The present nonlinear numerical scheme is similar to that described by Vinje and Brevig(1981) who utilized the Cauchy's theorem and assumed the periodicity in the horizontal coordinate. In the present thesis, however, the periodicity in the horizontal coordinate is not assumed. Thus the present method can treat more realistic problems, which allow radiating waves to infinities. In the present method of solution, the original infinite fluid domain, is divided into two subdomains ; ie the inner and outer subdomains which are a local nonlinear subdomain and the truncated infinite linear subdomain, respectively. By imposing an appropriate matching condition, the computation is carried out only in the inner domain which includes the body. Here we adopt the nonlinear scheme of Vinje & Brevig only in the inner domain and respresent the solution in the truncated infinite subdomains by distributing the time-dependent Green function on the matching boundaries. The matching condition is that the velocity potential and stream function are required to be continuous across the matching boundary. In the computations we used, if necessary, a regriding algorithm on the free surface which could give converged stable solutions successfully even for the breaking waves. In harmonic oscillation problem, each harmonic component and time-mean force are obtained by the Fourier transform of the computed forces in the time domain. The numerical calculations are made for the following problems. $\cdot$ Forced harmonic large-amplitude oscillation(${\omega}{\neq}0,\;U=0$) $\cdot$ Translation with a uniform speed(${\omega}=0,\;U{\neq}0$) The computed results are compared with available experimental data and other analytical results.
Journal of the Society of Naval Architects of Korea
/
v.35
no.1
/
pp.32-39
/
1998
A numerical analysis for large amplitude motions of submerged circular cylinder is presented. The method is based on potential theory and two-dimensional motions in regular harmonic waves are tented as an initial value problem. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed an assumed common boundary to a linear solution in outer domain. Calculations of the large amplitude motion of a submerged circular cylinder are directly simulated in time domain. It is shown that relative motion between the body and fluid particle gives a significant effect on the lift and drift motions.
Bulletin of the Society of Naval Architects of Korea
/
v.24
no.2
/
pp.47-54
/
1987
Linear and nonlinear hydrodynamic force, which acts on submerged circular and eilliptic cylinders in oscillations as well as in advancing motion, are investigated as an initial-boundary value problem using a numerical method, which makes use of the source distribution on the body surface and the spectral method for treating the free surface waves. In the numerical code developed here, the boundary condition at the body surface is linearized. Using the numerical code so attained, nonlinear effects for different forward speeds and of the large-amplitude motion are computed. One of the major findings is that, when the forward speed is large, the added mass has its minimum and the damping force change rapidly around the frequency corresponding to the speed-frequency parameter, $\tau$=0.25, Compared to the result of Grue's [10], who used linear theory to get abrupt changes in values of the added mass and the damping force at the frequency corresponding to $\tau$=0.25, the present study, which takes nonlinear effects into account, shows much smoother variations near the frequency.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2006.05a
/
pp.73-80
/
2006
In order to examine the validity of an asymptotic solution for nonlinear interaction in asymmetric vibration modes of a perfect circular plate, we obtain the numerical solution. The motion of the plate is governed by nonlinear partial differential equation. The initial and boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution. It is found that traveling waves relating clockwise and counterclockwise as well as standing wave are depicted by the numerical solution.
We investigate the influence of nonlinear viscoelastic damping on the response of a cantilever sensor covered by piezoelectric layers in a symmetric or asymmetric configuration. We formulate an initial-boundary-value problem which consistently incorporates both geometric and material nonlinearities including the effect of viscoelastic damping which cannot be ignored for micro- and nano-mechanical sensor operation in a vacuum environment. We employ an asymptotic multiple-scales methodology to yield the system nonlinear frequency response near its primary resonance and employ a model-based estimation procedure to deduce the system damping backone curve from controlled experiments in vacuum. We discuss the effect of nonlinear damping on sensor applications for scanning probe microscopy.
In this paper, we establish sufficient conditions for the existence and uniqueness of solution for a class of initial boundary value problems with Dirichlet condition in regard to a category of fractional-order partial differential equations. The results are established by a method based on the theorem of Lax Milligram.
We consider the following Dirichlet initial boundary value problem with a gradient absorption and a nonlocal source $$\frac{{\partial}u}{{\partial}t}-div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)={\lambda}u^k{\displaystyle\smashmargin{2}{\int\nolimits_{\Omega}}}u^sdx-{\mu}u^l{\mid}{\nabla}u{\mid}^q$$ in a bounded domain Ω ⊂ ℝN, where p > 1, the parameters k, s, l, q, λ > 0 and µ ≥ 0. Firstly, we establish local existence for weak solutions; the aim of this part is to prove a crucial priori estimate on |∇u|. Then, we give appropriate conditions in order to have existence and uniqueness or nonexistence of a global solution in time. Finally, depending on the choices of the initial data, ranges of the coefficients and exponents and measure of the domain, we show that the non-negative global weak solution, when it exists, must extinct after a finite time.
In this paper, we consider the asymptotic behavior of solutions for the partly dissipative reaction diffusion systems of the FitzHugh-Nagumo type with hereditary memory and a very large class of nonlinearities, which have no restriction on the upper growth of the nonlinearity. We first prove the existence and uniqueness of weak solutions to the initial boundary value problem for the above-mentioned model. Next, we investigate the existence of a uniform attractor of this problem, where the time-dependent forcing term h ∈ L2b(ℝ; H-1(ℝN)) is the only translation bounded instead of translation compact. Finally, we prove the regularity of the uniform attractor A, i.e., A is a bounded subset of H2(ℝN) × H1(ℝN) × L2µ(ℝ+, H2(ℝN)). The results in this paper will extend and improve some previously obtained results, which have not been studied before in the case of non-autonomous, exponential growth nonlinearity and contain memory kernels.
This paper deals with the behavior of positive solutions to the following nonlocal polytropic filtration system $$\{u_t=(\mid(u^{m_1})_x{\mid}^{{p_1}^{-1}}(u^{m_1})_x)_x+u^{l_{11}}{{\int_0}^a}v^{l_{12}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T),\\{v_t=(\mid(v^{m_2})_x{\mid}^{{p_2}^{-1}}(v^{m_2})_x)_x+v^{l_{22}}{{\int_0}^a}u^{l_{21}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T)}$$ with nonlinear boundary conditions $u_x{\mid}{_{x=0}}=0$, $u_x{\mid}{_{x=a}}=u^{q_{11}}u^{q_{12}}{\mid}{_{x=a}}$, $v_x{\mid}{_{x=0}}=0$, $v_x|{_{x=a}}=u^{q21}v^{q22}|{_{x=a}}$ and the initial data ($u_0$, $v_0$), where $m_1$, $m_2{\geq}1$, $p_1$, $p_2$ > 1, $l_{11}$, $l_{12}$, $l_{21}$, $l_{22}$, $q_{11}$, $q_{12}$, $q_{21}$, $q_{22}$ > 0. Under appropriate hypotheses, the authors establish local theory of the solutions by a regularization method and prove that the solution either exists globally or blows up in finite time by using a comparison principle.
In this study, a nonlinear wave simulation code is developed using a higher-order spectral (HOS) method. The HOS method is very efficient because it can determine the solution of the boundary value problem using fast Fourier transform (FFT) without matrix operation. Based on the HOS order, the vertical velocity of the free surface boundary was estimated and applied to the nonlinear free surface boundary condition. Time integration was carried out using the fourth order Runge-Kutta method, which is known to be stable for nonlinear free-surface problems. Numerical stability against the aliasing effect was guaranteed by using the zero-padding method. In addition to simulating the initial wave field distribution, a nonlinear adjusted region for wave generation and a damping region for wave absorption were introduced for wave generation simulation. To validate the developed simulation code, the adjusted simulation was carried out and its results were compared to the eighth order Stokes theory. Long-time simulations were carried out on the irregular wave field distribution, and nonlinear wave propagation characteristics were observed from the results of the simulations. Nonlinear adjusted and damping regions were introduced to implement a numerical wave tank that successfully generated nonlinear regular waves. According to the variation in the mean wave steepness, irregular wave simulations were carried out in the numerical wave tank. The simulation results indicated an increase in the nonlinear interaction between the wave components, which was numerically verified as the mean wave steepness. The results of this study demonstrate that the HOS method is an accurate and efficient method for predicting the nonlinear interaction between waves, which increases with wave steepness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.