• 제목/요약/키워드: indoor propagation

검색결과 171건 처리시간 0.023초

Measurement and Comparison of Wi-Fi and Super Wi-Fi Indoor Propagation Characteristics in a Multi-Floored Building

  • Hwang, Gyumin;Shin, Kyubo;Park, Sanghyeok;Kim, Hyoil
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.476-483
    • /
    • 2016
  • Super Wi-Fi is a Wi-Fi-like service exploiting TV white space (WS) which is expected to achieve larger coverage than today's Wi-Fi thanks to its superior propagation characteristics. Super Wi-Fi has been materialized as an international standard, IEEE 802.11af, targeting indoor and outdoor applications, and is undergoing worldwide field tests. This paper demonstrates the true potential of indoor Super Wi-Fi, by experimentally comparing the signal propagation characteristics of Super Wi-Fi and Wi-Fi in the same indoor environment. Specifically, we measured the wall and floor attenuation factors and the path-loss distribution at 770MHz, 2.401 GHz, and 5.540 GHz, and predicted the downlink capacity of Wi-Fi and Super Wi-Fi. The experimental results have revealed that TVWS signals can penetrate up to two floors above and below, whereas Wi-Fi signals experience significant path loss even through a single floor. It has been also shown that Super Wi-Fi mitigates shaded regions of Wi-Fi by providing almost-homogeneous data rates within its coverage, performs comparable to Wi-Fi utilizing less bandwidth, and always achieves better spectral efficiency than Wi-Fi. The observed phenomena imply that Super Wi-Fi is suitable for indoor applications and has the potential of extending horizontal and vertical coverage of today's Wi-Fi.

SBR 및 영상기법을 이용한 실내 환경의 전파특성 예측과 분석 (The Prediction and Analysis of the Propagation Characteristics in Indoor Environments Using the SBR/Image Method)

  • 손호경;김채영;김성진
    • 한국전자파학회논문지
    • /
    • 제12권2호
    • /
    • pp.199-207
    • /
    • 2001
  • 본 논문에서는 실내환경에 적합한 전파특성 예측 및 분석 기법을 제시하였다. 본 기법에서는 3차원 광선 추적 기법시 사용되는 수신구를 사용하지 않음으로써 코드의 구현을 용이하게 하였다. 개발한 코드의 타당성은 영상법에의한 결과치 및 측정치와 각각 비교함으로써 검증되었다. 개발된 기법을 직육면체 복도의 중간쯤에 철재 방화문이 설치된 구조에 적용하였고, 방화문의 각도에 따른 경로손실을 계산하였다. 그 결과 PCS 대역에서 방화문으로부터 30 m 떨어진 지점의 경로 손실은 약 15 dB 정도 감쇄하였고, 지연 확산량은 약 4배 정도 증가하였다. 이는 PCS 대역일 경우, 복도에 설치된 방화문에 의해서 실태 전파 환경이 크게 변화됨을 의미하는 것이다.

  • PDF

Factor Graph-based Multipath-assisted Indoor Passive Localization with Inaccurate Receiver

  • Hao, Ganlin;Wu, Nan;Xiong, Yifeng;Wang, Hua;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.703-722
    • /
    • 2016
  • Passive wireless devices have increasing civilian and military applications, especially in the scenario with wearable devices and Internet of Things. In this paper, we study indoor localization of a target equipped with radio-frequency identification (RFID) device in ultra-wideband (UWB) wireless networks. With known room layout, deterministic multipath components, including the line-of-sight (LOS) signal and the reflected signals via multipath propagation, are employed to locate the target with one transmitter and a single inaccurate receiver. A factor graph corresponding to the joint posterior position distribution of target and receiver is constructed. However, due to the mixed distribution in the factor node of likelihood function, the expressions of messages are intractable by directly applying belief propagation on factor graph. To this end, we approximate the messages by Gaussian distribution via minimizing the Kullback-Leibler divergence (KLD) between them. Accordingly, a parametric message passing algorithm for indoor passive localization is derived, in which only the means and variances of Gaussian distributions have to be updated. Performance of the proposed algorithm and the impact of critical parameters are evaluated by Monte Carlo simulations, which demonstrate the superior performance in localization accuracy and the robustness to the statistics of multipath channels.

배선 길이 변화에 따른 뇌서지 전파 특성에 대한 실험 연구 (Experimental Study on The Propagation Characteristics of Lightning Surge According to Variation of Wire Length)

  • 서호준;이동희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권12호
    • /
    • pp.616-619
    • /
    • 2004
  • Electrical circuits with semiconductor are very weak against lightning surge. The surge protective devices for electronic circuit and AC power lines are becoming more widely used. To achieve effective method of surge protection, there are needs for correlation between lightning surge and indoor wire length or installation height of indoor wire. The aim of this present work is to investigate the propagation characteristics of lightning surge according to variation of wire length. As a consequence, the maximum voltage at the end of the open wire in proportion to length of indoor wire. Therefore this result may be raw data for establishment of surge protection system.

Indoor Propagation Characteristics at 5.2GHz in Home and Office Environments

  • Chung, Hyun-Kyu;Bertoni, Henry L.
    • Journal of Communications and Networks
    • /
    • 제4권3호
    • /
    • pp.176-188
    • /
    • 2002
  • This paper presents results of continuous wave and swept frequency response measurements over the frequency range of UNII lower and middle bands from 5.15GHz to 5.35GHz in indoor environments. From the continuous wave measurements at 5.2GHz, the excess path loss, and the statistical characteristics of the temporal and spatial fading were found. By sweeping the frequency over the band, envelope correlation as a function of frequency was found and the coherence bandwidth (CBW) was determined from the envelope correlation. Using a channel model, the CBW was used to evaluate RMS delay spread. The dependence of CBW on the antenna polarization was simulated and compared with the measurement results. The influence of room size and separation of transmitter and receiver for LOS paths on RMS delay spread was discussed.

V-밴드 밀리미터파 대역의 실내 통신환경 분석을 위한 경로손실 예측 소프트웨어 개발 (Development of Propagation Loss Prediction Software for the Indoor V-Band Millimeterwave Communication Environments)

  • 전중창
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권1호
    • /
    • pp.35-39
    • /
    • 2008
  • 본 논문에서는, 기하광학 기법을 적용하여 60GHz 대역의 밀리미터파 실내통신환경에서 전파손실 파라미터를 예측할 수 있는 GUI 기반의 프로그램을 개발하였다. 프로그램은 전기영상법과 광선 추적기법의 두 가지 모듈로 구성되어 있으며, 각각 UTD 이론이 적용되었다. 전기영상법을 사용한 일(一)자형 복도 구조와 광선 추적기법을 적용한 T자형 복도 구조에 대한 결과를 제시하였다. 시물레이션 결과 데이터는 기존 논문에서 발표된 측정 데이터와 비교 검증하였으며, 전파손실에 대한 비교결과가 매우 잘 일치 하였다.

  • PDF

Impact of the human body in wireless propagation of medical implants for tumor detection

  • Morocho-Cayamcela, Manuel Eugenio;Kim, Myung-Sik;Lim, Wansu
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.19-26
    • /
    • 2020
  • This paper analyses the feasibility of using implantable antennas to detect and monitor tumors. We analyze this setting according to the wireless propagation loss and signal fading produced by human bodies and their environment in an indoor scenario. The study is based on the ITU-R propagation recommendations and prediction models for the planning of indoor radio communication systems and radio local area networks in the frequency range of 300 MHz to 100 GHz. We conduct primary estimations on 915 MHz and 2.4 GHz operating frequencies. The path loss presented in most short-range wireless implant devices does not take into account the human body as a channel itself, which causes additional losses to wireless designs. In this paper, we examine the propagation through the human body, including losses taken from bones, muscles, fat, and clothes, which results in a more accurate characterization and estimation of the channel. The results obtained from our simulation indicates a variation of the return loss of the spiral antenna when a tumor is located near the implant. This knowledge can be applied in medical detection, and monitoring of early tumors, by analyzing the electromagnetic field behavior of the implant. The tumor was modeled under CST Microwave Studio, using Wisconsin Diagnosis Breast Cancer Dataset. Features like the radius, texture, perimeter, area, and smoothness of the tumor are included along with their label data to determine whether the external shape has malignant or benign physiognomies. An explanation of the feasibility of the system deployment and technical recommendations to avoid interference is also described.

Adaptive Neuro-Fuzzy Inference Systems for Indoor Propagation Prediction

  • Phaiboon, S.;Phokharatkul, P.;Somkurnpanich, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1865-1869
    • /
    • 2004
  • A new model for the propagation prediction for mobile communication network inside building is presented in this paper. The model is based on the determination of the dominant paths between the transmitter and the receiver. The field strength is predicted with adaptive neuro - fuzzy inference systems (ANFIS), trained with measurements. The advantage of the ANFIS with hybrid least squares and gradient descent algorithms is fast convergence compared with original neural network. The K-means algorithm for selection of training patterns is also used. Comparison of our predicted results to measurements indicate that improvements in accuracy over conventional empirical model are achieved.

  • PDF

실내 마이크로셀 환경에서 전파 경로손실의 예측과 측정 (Prediction and measurement of propagation path loss in indoor microcellular environments)

  • 정백호;김채영;이숭복
    • 전자공학회논문지S
    • /
    • 제34S권11호
    • /
    • pp.1-8
    • /
    • 1997
  • A prediction model is proposed to describe the path loss in propagation environment of indoor microcell. This model includes the lineal corridor for line--of-sight(LOS) and T-shaped corridor for non-line-of-sight(NLOS). In computation of receiving power the ray tracing technique based on image method is utilized and also reflected waves bounced on the walls and ceilings are considered. To check validity of the computed resuls cross checks between the predicted and measured are being made, which shows a close agreement for LOS case whereas somewhat disagreement for NLOS case. UTD technique is incorporated with propagation path determination algorithm in the treatment of NLOS case.

  • PDF

Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning

  • Lu, Yu-Sheng;Lai, Chin-Feng;Hu, Chia-Cheng;Huang, Yueh-Min;Ge, Xiao-Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.243-257
    • /
    • 2010
  • Rapid developments in wireless sensor networks have extended many applications, hence, many studies have developed wireless sensor network positioning systems for indoor environments. Among those systems, the Global Position System (GPS) is unsuitable for indoor environments due to Line-Of-Sight (LOS) limitations, while the wireless sensor network is more suitable, given its advantages of low cost, easy installation, and low energy consumption. Due to the complex settings of indoor environments and the high demands for precision, the implementation of an indoor positioning system is difficult to construct. This study adopts a low-cost positioning method that does not require additional hardware, and uses the received signal strength (RSS) values from the receiver node to estimate the distance between the test objects. Since many objects in indoor environments would attenuate the radio signals and cause errors in estimation distances, knowing the path loss exponent (PLE) in an environment is crucial. However, most studies preset a fixed PLE, and then substitute it into a radio propagation loss model to estimate the distance between the test points; such method would lead to serious errors. To address this problem, this study proposes a Path Loss Exponent Estimation Algorithm, which uses only four beacon nodes to construct a radio propagation loss model for an indoor environment, and is able to provide enhanced positioning precision, accurate positioning services, low cost, and high efficiency.