
1. INTRODUCTION

OWADAY, there are two different approaches for the

prediction of the field strength  inside buildings. On the

first hand there are empirical models, based on the regression

of measurement data [1]-[2]. These models are very fast and

easy to apply in computing the prediction model. However,

they would rather suffer with poor accuracy. On the other

hand, there are deterministic models like ray tracing [3]-[5].

However, these models are sacrificed with excessive

computation time and the requirement of detailed databases.

Cheung et al [6] have proposed a new empirical model that is

based on the uniform theory of diffraction (UTD) shown the

superior accuracy of its prediction. However, the model has

problem of accuracy for highly reflective environments

because it did not take account of waveguiding effect from the

reflected rays.    G. Wölfle et al. [7] demonstrated that a

neural-based propagation loss model for indoor environment

train by a back-propagation algorithms showed the superior

accuracy of its prediction. However, the MLP has problem of

slow convergence and unpredictable solutions during training.

To solve these problems, this paper presents a means to

approximate the indoor propagation loss based on adaptive

neuro-fuzzy inference systems (ANFIS) [8]. ANFIS consist of

fuzzy rules which are local mappings (which are called local

experts) instead of global ones. These local mappings facilitate

the minimal disturbance principle, which states that the

adaptation should not only reduce the output error for the

current training pattern but also minimize disturbance to

response already learned. This is particularly important in on-

line learning. The ANFIS also use the least-squares method to

determine the output of each local mapping is of particular

importance. As the results, the prediction with high accuracy

and fast convergence can be obtained.

 One major advantage of the ANFIS is that hybrid learning

algorithm, which can be divided into two pass, like redial

basis function (RBF) neural network in which the fast

convergence has been guaranteed  [8].  In the first pass, the

consequent parameters are identified by the least square

method under the condition that the premise parameters are

fixed. Accordingly, the hybrid approach converges much

faster since it reduces the searching space dimensions of the

original MLP.  In the second pass, the error signals propagate

backward and the premise parameters are updated by gradient

descent under the condition that the consequent parameters are

fixed. As the results, the prediction with high accuracy and

fast convergence can be obtained.

In this paper, we propose a new formulation for applying

the adaptive network based fuzzy inference system in order to

improve convergence performance of this hybrid algorithm.

 Section II describes the determination of the dominant

path.  Section III presents the new procedure for the

approximation of propagation loss model in indoor

environment using the ANFIS.  Section IV describes  the

measurement procedure in the building used to the training

and checking data.  Section V presents the prediction results

and the effectiveness of the ANFIS model.  Finally, the paper

is concluded in Section VI.

2. PREDICTION OF  PROPAGATION PATH LOSS

The first step of the proposed model is to determine the

and/or diffracted ray paths going to the receiver would be

combined to a dominant path. This dominant path contains

only information about the direction of the path, diffraction at

the corner and the passed rooms.  The algorithm determining

of the dominant paths sometime leads to more than one

solution. But in most cases only one solution with the smallest

path loss is necessary for an accurate prediction and chosen by

the minimum of LT defined as

Where LT  is the total attenuation along the dominant path, LD

and LDIF are distance dependence path loss and diffraction

path loss respectively.
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A. Distance Dependence path loss LD

We define the path loss as the function of the distance

between the transmitter and the receiver, d for the dominant

path. This propagation loss has two distinct regions [6].  In the

first region, within 0-15 m of the transmitter, the propagation

loss is similar to that occurring in free space. This is because

the obstructions, such as walls and doors, do not interact

significantly with propagation waves at proximal ranges.  On

the other hand for the distal region, the propagation loss

increases significantly as the electromagnetic waves become

obstructed by the walls and doors of the rooms in the building.

The distance at which this transition in propagation occurs is

referred to here as the breakpoint.  The distance dependence

path loss then follows:

Where do is the reference distance which is taken here as 1 m

from the transmitter,  dbp is the distance of the breakpoint from

the transmitter, n1 and n2  are the path-loss exponents on either

side of the breakpoint, and U( ) is the unit step function

defined as

WAF(p) is the value of the wall attenuation factor  at normal

incidence and the p  is the angle between the pth wall and

straight-line path joining the transmitter to receiver.

The parameters dbp, n1 and n2 can be obtained from the used

of Fresnel zones. By considering the size of the first Fresnel

zone, a distance d from the transmitter and determining at

what distance it will become obstructed the breakpoint dbp, can

be calculated by  dbp, = 4(H-h2)h2/  [9]. Consequently, in a

ceiling 2.5 m height and receiving antenna 1.5 m height,  the

breakpoint dbp  is determined at 36 m  for frequency  1800

MHz.

The exponent n1 generally should be about the free-space

value of  2.0 once antenna effects are removed.The parameter

n2  we have found  value of  1.7 for propagation along  the

corridor [9].

B. Diffraction  path loss LDIF

In general, wave propagation guided by a corridor will

sometime provide an indirect path, which may be significantly

greater than the propagation loss from the straight-line path

between the transmitter and the receiver. Therefore, the

indirect paths are needed to be the dominant paths and

determined from diffraction from corners (including door and

window frames) in the building. The diffraction path loss is

given by

Where M  is the number of  the corners in the building data

base,  the subscript m refer to m th corner, and D( ) is the

dimensionless quantity 10 L
D

( ) /10

3. PREDICTION OF PROPAGATION PATH LOSS

For computation of path loss with ANFIS, the parameters

of  the minimum loss dominant path in Section II must be

determined. Because the dominant paths represent a group of

nearly similar rays between the transmitter and the receiver,

all relevant parameters of these rays governing propagation

should be considered in the description of the dominant path.

The parameters of the dominant path will be grouped into

fuzzy sets for the ANFIS inputs.

A. Parameters of the dominant path

The prediction with accuracy results have been obtained with

the following parameters

     1). Free space attenuation along the path LFS

Where d is the distance of the dominant path

2). Wall loss LW

Where WAF(p) is the value of the wall attenuation factor  at

normal incidence and the p  is the angle between the p th wall

and  the dominant path.

3). Angle loss at the corner to the transmitter LT

Where Ak, AT(m) is the normalized factor and  angle of

changing in the direction of the dominant path along the

corridor since corner diffraction relative to the transmitter, M

is the number of corners in the building database and m refer
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               Fig. 1.  Fuzzy sets of the input parameters

to the m th corner.

      4).  Angle loss at the corner to the receiver LR

Where Ak, AR(m) is the normalized factor and  angle of

changing in the direction of the dominant path along the

corridor since corner diffraction relative to the receiver, M is

the number of corners in the building database and m refers to

the mth corner.

B. ANFIS architecture for the prediction

The fuzzy inference system under consideration has four

inputs and one output   The inputs  consist of  four parameters

as considered  in  part A, each parameter  is fuzzified  in to

three fuzzy sets ( for a good model,[8]) namely, L = low, M =

medium and H = high, as shown in Fig. 1 We use the

generalized bell function  for the membership function of the

fuzzy sets, which  is given by

  Where Ai( ) is membership function,{ai, bi, ci) is the

parameter set.

The common rule set for  first-order Sugeno fuzzy model

with four fuzzy if-then rules is the following

 Rule i: If LFS is Aj and LW is Bj and LT is Cj and LR is Dj,

 then fi = piLFS +qiLW +riLT+ siLR +ti.

Where  Aj, Bj, Cj, and Dj are fuzzy sets of LFS , LW, LT ,and LR

respectively, subscript i=1, 2, 3,….,n, n is  the number of rules

and subscript j represent fuzzy set L, M, and H for j=1, 2, and

3 respectively, fi is the path loss output of the fuzzy rule i,

The corresponding equivalent ANFIS architecture is shown

in Fig. 2, where nodes of the same layer have similar

functions, as following. (we define the output of the j th node

in layer as Ol,j )

    1)  layer 1

          Fig. 2.  The equivalent ANFIS architecture

Every node i th this layer is an adaptive node with a node

function as follows

                       Ol,j = Ai(LFS),           for i = 1, 2, 3, or

                       Ol,j = Bi-4(LW),         for i = 4, 5, 6, or

                       Ol,j = Ci-7(LT),          for i = 7, 8, 9, or

                       Ol,j = Di-10(LR)        for i = 10, 11, 12           (10)

The parameters in this layer are called as premise

parameters.

    2)  layer 2

Every node in this layer is  a fixed node labeled , whose

output is the product of all the incoming signal as follows

          O2,i = wi = Ai(LFS) Bi(LW) Ci(LT) Di(LR), i = 1, 2, 3  (11)

Each node output represents the firing strength of the rule.

3)  layer 3

Every node in this layer is  a fixed node labeled ,  The i th

node calculates the ratio of the i th rule’s firing strength to the

sum of all rule’s firing strengths as follows

The output of this layer are called normalized firing strengths.

4)  layer 4

Every node  i in this layer is an adaptive node with a node

function

Where wi is a normalized firing strength from layer 3 and {pi,

qi, ri, si} is the parameter set of this node. Parameters in this

layer are referred to as consequent parameters.

  5)  layer 5

The single node in this later is a fixed node labeled ,

which computes the overall output as the summation of all
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                 Fig 2.  Membership function after learning

incoming signals as follows

C. Hybrid learning algorithm

The ANFIS architecture consists of 5 layers. The

parameters in first layer are premise parameters and in layer 4

are consequent parameters [8]. When the values of the premise

parameters are fixed, the overall output can be expressed as a

linear combination of the consequent parameters, pi, qi, ri, si,

and ti, i=1, 2, 3,….,n, n is  the number of rules. From this

observation, we have three set of parameters, that are 1) Set of

the total parameters, 2) Set of premise (nonlinear) parameters,

and 3) Set of consequent (linear) parameters. In the forward

pass of the hybrid learning algorithm, node output go forward

until layer 4 and the consequent parameters are identified by

the least squares method. In the backward pass, the error

signals propagation backward and the premise parameters are

updated by gradient. The consequent parameters which are

optimal under the condition that the premise parameters are

fixed. At the result, the hybrid approach converges much

faster since it reduces the search space dimensions of the

original pure back propagation method.

4. TRAINING PATTERNS

A. Measurement procedure and locations

The equipment for propagation measurement consisted

of  a fixed transmitter and a narrow-band (20KHz) portable

receiver with a notebook computer. The fixed transmitter

consisted of  a network analyzer (with 20 dBm power output)

and /4 omnidirectional (2.2 dBi gain) at a height 1.5 m. We

used a spectrum analyzer and /4 omnidirectional (2.2 dBi

gain) at a height 1.5 m for signal strength measurement.

To receive propagation data for training and prediction,

about 431 samples of the actual field at frequency 1800 MHz

were acquired on uniform grid (with a grid size of 1 m2 ) in a

laboratory building area for the training data the checking

data.  We removed the effects of fast fading at each sample

point by the mean value of  at least 25 measurement in a 400

cm2 area centered around the sample point.

The laboratory building of Mahidol University was

Fig 3.  Curve plots of prediction versus measured signal

strength

completed in 1993 and consists of five floors and  a dimension

of  50 x 50 m2 . The construction of the building is of concrete

block,  plaster board, and mirror walls, the floor to floor height

is 4 m a suspended ceiling containing air conditioning and

service ducts 2.5 m above the floor. The general environment

has furniture primarily constructed from wood or metal in

office and laboratory spaces.

B. Selection of training patterns

Since the statistical distribution of each input parameter of the

ANFIS combination of the different input parameters is

distributed in a homogeneous way. So the training sometime

can not convergence. To avoid this event, an algorithm for the

selection of representative training patterns has been used. The

method for classification  is developed from K-means

algorithm.[10] in appendix.

5. PREDICTION RESULTS
 In order to compare our method with the conventional

empirical model in (2), a set of 431 measurement points taken

in the laboratory building was divided   into 101 training

patterns and 59 checking patterns. By inputting 101 training

patterns into the ANFIS network, the training mean-squared

error can be found as 0.008 after 5,000 epochs of training

while the original MLP training was not converged by the

same training patterns. Fig. 2 illustrates the membership

functions after training. It is interesting to observe that the

curve of the membership functions of LFS are significantly

changed since the effect of the free space loss along the

corridor. It is fact that if the free space loss is low, the received

signal strength is high. But in case of diffraction at the corner

along the corridor, the received signal strength has been still

high although the free space loss is  increased. Accordingly,

the membership after training was adjusted in order that the

free space loss fall in fuzzy set L.

Next, we would like to verify the approximation capability

of the ANFIS-based propagation prediction model by a set of

59 checking patterns. A comparison of curves shown in Fig. 3.

The standard deviation in error for the ANFIS model (14) is

6.6 dB while that for the conventional model (2) is 12.1 dB.

It can be observed that the convention model (2)

predictions overestimate the actual signal strength by up to 40

dB as shown in Fig. 3. The reason the conventional model

performs poorly in this region is because the direct path
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becomes blocked by the large attenuation of walls between the

transmitter  and the receiver making the conventional model

prediction a small signal strength. The ANFIS model,

however, finds that the actual signal strength is high because

there is a diffracted path from the corners along the corridors

                                  6.  CONCLUSION

In this paper, we have provide a new model for propagation

prediction inside the building. It is based on the determination

of the  defined dominant path between the transmitter and the

receiver. The parameters of these paths are then used as input

values for ANFIS ,which is trained with measured data. We

have also demonstrated that the model has improved accuracy

compare to the conventional model in a laboratory building.

This is achieved by a proper selection of the training patterns

of the ANFIS and a validation of the training progress.

Because of the very small computation time of this

approach  nearly similar to the empirical models, it is suggests

that it is would be really suited for planning the base station

position within buildings [11]-[12].
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                           Appendix

Algorithms of group classification

1) Select m patterns from training set, use as the initial

centers for each group.

2) Distribute the sample x among the m groups.

3) Find distance between pattern and mean of each group.

                                                    ……………

Figure A1. Diagram of the group classification
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Where x( ), M( ) and n are the value of pattern, the mean value

of the pattern in group, and the number of pattern in group

respectively

4) If )),(tanmin( mgxcedis  larger than threshold

value (here we used 0.06) then we created new group.

5) Therefore, the new cluster center are computed.
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