• Title/Summary/Keyword: implicit iteration process

Search Result 20, Processing Time 0.024 seconds

AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF STRONGLY PSEUDOCONTRACTIVE MAPPINGS

  • Raflq, Arif;Lee, Byung-Soo
    • The Pure and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.307-314
    • /
    • 2009
  • The purpose of this paper is to establish a strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of continuous strongly pseudocontractive mappings. The results presented in this paper extend and improve the corresponding results of References [2, 6, 11-12].

  • PDF

STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF STRONG SUCCESSIVELY $\Phi$-PSEUDOCONTRACTIVE MAPS

  • Chen, Rudong;Miao, Qian
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.105-110
    • /
    • 2008
  • The aim of this paper is to prove convergence of implicit iteration process to a common fixed point for a finite family of strong successive $\Phi$-pseudocontractive mappings. The results presented in this paper extend and improve the corresponding results of S. S. Chang [On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313(2006), 273-283], M. O. Osilike[Implicit iteration process for common fixed points of a finite finite family of strictly pseudocontractive maps, Appl. Math. Comput. 189(2) (2007), 1058-1065].

  • PDF

CONVERGENCE THEOREMS OF MIXED TYPE IMPLICIT ITERATION FOR NONLINEAR MAPPINGS IN CONVEX METRIC SPACES

  • Kyung Soo, Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.903-920
    • /
    • 2022
  • In this paper, we propose and study an implicit iteration process for a finite family of total asymptotically quasi-nonexpansive mappings and a finite family of asymptotically quasi-nonexpansive mappings in the intermediate sense in convex metric spaces and establish some strong convergence results. Also, we give some applications of our result in the setting of convex metric spaces. The results of this paper are generalizations, extensions and improvements of several corresponding results.

AN IMPLICIT ITERATES FOR NON-LIPSCHITZIAN ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN CAT(0) SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • v.28 no.1
    • /
    • pp.81-92
    • /
    • 2012
  • The purpose of this paper is to establish strong convergence of an implicit iteration process to a common fixed point for a finite family of asymptotically quasi-nonexpansive type mappings in CAT(0) spaces. Our results improve and extend the corresponding results of Fukhar-ud-din et al. [15] and some others from the current literature.

CONVERGENCE THEOREMS OF IMPLICIT ITERATION PROCESS WITH ERRORS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE IN BANACH SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • v.28 no.1
    • /
    • pp.63-71
    • /
    • 2012
  • The aim of this article is to study an implicit iteration process with errors for a finite family of non-Lipschitzian asymptotically non expansive mappings in the intermediate sense in Banach spaces. Also we establish some strong convergence theorems and a weak convergence theorem for said scheme to converge to a common fixed point for non Lipschitzian asymptotically nonexpansive mappings in the intermediate sense. The results presented in this paper extend and improve the corresponding results of [1], [3]-[8], [10]-[11], [13]-[14], [16] and many others.

CONVERGENCE TO COMMON FIXED POINTS FOR A FINITE FAMILY OF GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • v.29 no.1
    • /
    • pp.23-37
    • /
    • 2013
  • The purpose of this paper is to study an implicit iteration process with errors and establish weak and strong convergence theorems to converge to common fixed points for a finite family of generalized asymptotically quasi-nonexpansive mappings in the framework of uniformly convex Banach spaces. Our results extend, improve and generalize some known results from the existing literature.

IMPLICIT ITERATION PROCESS FOR COMMON FIXED POINTS OF AN INFINITE FAMILY OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS IN BANACH SPACES

  • Chang, Shih-Sen;Cho, Yeol-Je;Kim, Jong-Kyu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.571-581
    • /
    • 2010
  • Some convergence theorems for approximating to a common fixed point of an infinite family of strictly pseudocontractive mappings of Browder-Petryshyn type are proved in the setting of Banach spaces by using a new composite implicit iterative process with errors. The results presented in the paper generalize and improve the main results of Bai and Kim [1], Gu [4], Osilike [5], Su and Li [7], and Xu and Ori [8].

Explicit time integration algorithm for fully flexible cell simulation (외연적 적분 기법을 적용한 Fully Flexible Cell 분자 동영학 시뮬레이션)

  • Park Shi-Dong;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.389-394
    • /
    • 2006
  • Fully flexible cell preserves Hamiltonian in structure, so the symplectic time integrator is applied to the equations of motion. Primarily, generalized leapfrog time integration (GLF) is applicable, but the equations of motion by GLF have some of implicit formulas. The implicit formulas give rise to a complicate calculation for coding and need an iteration process. In this paper, the time integration formulas are obtained for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term, so the simple and completely explicit recursion formula was obtained. The explicit formulas are easy to implementation for coding and may be reduced the integration time because they are not need iteration process. We are going to compare the resulting splitting time integration with the implicit generalized leapfrog time integration.

  • PDF

STRONG CONVERGENCE OF COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS

  • Gu, Feng
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E. Let ${\{T_i\}}^N_{i=1}$ be N nonexpansive self-mappings of K with $F\;=\;{\cap}^N_{i=1}F(T_i)\;{\neq}\;{\theta}$ (here $F(T_i)$ denotes the set of fixed points of $T_i$). Suppose that one of the mappings in ${\{T_i\}}^N_{i=1}$ is semi-compact. Let $\{{\alpha}_n\}\;{\subset}\;[{\delta},\;1-{\delta}]$ for some ${\delta}\;{\in}\;(0,\;1)$ and $\{{\beta}_n\}\;{\subset}\;[\tau,\;1]$ for some ${\tau}\;{\in}\;(0,\;1]$. For arbitrary $x_0\;{\in}\;K$, let the sequence {$x_n$} be defined iteratively by $\{{x_n\;=\;{\alpha}_nx_{n-1}\;+\;(1-{\alpha}_n)T_ny_n,\;\;\;\;\;\;\;\;\; \atop {y_n\;=\;{\beta}nx_{n-1}\;+\;(1-{\beta}_n)T_nx_n},\;{\forall}_n{\geq}1,}$, where $T_n\;=\;T_{n(modN)}$. Then {$x_n$} convergence strongly to a common fixed point of the mappings family ${\{T_i\}}^N_{i=1}$. The result presented in this paper generalized and improve the corresponding results of Chidume and Shahzad [C. E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62(2005), 1149-1156] even in the case of ${\beta}_n\;{\equiv}\;1$ or N=1 are also new.

  • PDF