DOI QR코드

DOI QR Code

CONVERGENCE THEOREMS OF IMPLICIT ITERATION PROCESS WITH ERRORS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE IN BANACH SPACES

  • Saluja, G.S. (Department of Mathematics and Information Technology, Govt. Nagarjuna P. G. College of Science)
  • Received : 2011.06.21
  • Accepted : 2011.11.09
  • Published : 2012.01.31

Abstract

The aim of this article is to study an implicit iteration process with errors for a finite family of non-Lipschitzian asymptotically non expansive mappings in the intermediate sense in Banach spaces. Also we establish some strong convergence theorems and a weak convergence theorem for said scheme to converge to a common fixed point for non Lipschitzian asymptotically nonexpansive mappings in the intermediate sense. The results presented in this paper extend and improve the corresponding results of [1], [3]-[8], [10]-[11], [13]-[14], [16] and many others.

Keywords

References

  1. H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996), 150-159. https://doi.org/10.1006/jmaa.1996.0308
  2. R. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonex-pansive mappings in Banach spaces with the uniform Opial property, Collo. Math. 65 (1993), no. 2, 169-179. https://doi.org/10.4064/cm-65-2-169-179
  3. S. S. Chang and Y. J. Cho, The implicit iterative processes for asymptotically nonex-pansive mappings, Nonlinear Anal. Appl. 1 (2003), 369-382.
  4. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
  5. J. Gornicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolin. 301 (1989), 249-252.
  6. F. Gu, Strong and weak convergence of implicit iterative process with errors for asymptotically nonexpansive mappings, J. Appl. Anal. 12 (2006), no. 2, 267-282.
  7. B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  8. P. L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Paris Ser. I Math. 284 (1977), 1357-1359.
  9. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  10. M. O. Osilike, Implicit iteration process for common fixed point of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004), 73-81. https://doi.org/10.1016/j.jmaa.2004.01.038
  11. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  12. J. Schu, Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159. https://doi.org/10.1017/S0004972700028884
  13. Z. Sun, Strong convergence of an implicit iteration process for a nite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), no. 1, 351-358. https://doi.org/10.1016/S0022-247X(03)00537-7
  14. K. K. Tan and H. K. Xu, The nonlinear ergodic theorem for asymptotically nonexpansive mappings in banach spaces, Proc. Amer. Math. Soc. 114 (1992), 399-404. https://doi.org/10.1090/S0002-9939-1992-1068133-2
  15. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
  16. R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491. https://doi.org/10.1007/BF01190119
  17. H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001), 767-773. https://doi.org/10.1081/NFA-100105317
  18. Y. Y. Zhou and S. S. Chang, Convergence of implicit iterative process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 23 (2002), 911-921. https://doi.org/10.1081/NFA-120016276