• Title/Summary/Keyword: impedance-based method

Search Result 603, Processing Time 0.025 seconds

Development of an Intelligent Charger with a Battery Diagnosis Function Using Online Impedance Spectroscopy

  • Nguyen, Thanh-Tuan;Doan, Van-Tuan;Lee, Geun-Hong;Kim, Hyung-Won;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1981-1989
    • /
    • 2016
  • Battery diagnosis is vital to battery-based applications because it ensures system reliability by avoiding battery failure. This paper presents a novel intelligent battery charger with an online diagnosis function to circumvent interruptions in system operation. The charger operates in normal charging and diagnosing modes. The diagnosis function is performed with the impedance spectroscopy technique, which is achieved by injecting a sinusoidal voltage excitation signal to the battery terminals without the need for additional hardware. The impedance spectrum of the battery is calculated based on voltage excitation and current response with the aid of an embedded digital lock in amplifier in a digital signal processor. The measured impedance data are utilized in the application of the complex nonlinear least squares method to extract the battery parameters of the equivalent circuit. These parameters are then compared with the reference values to reach a diagnosis. A prototype of the proposed charger is applied to four valve-regulated lead-acid batteries to measure AC impedance. The results are discussed.

A Study on the Test Method of RLC Parallel Circuits on the Device-Mounted Electronic Circuit Board (부품이 실장된 전자회로보드의 RLC 병렬회로 검사기법에 대한 연구)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.475-481
    • /
    • 2005
  • In the existing ICT technique, the mounted electronic devices on the printed circuit board are tested whether the devices are good or not by comparing and measuring the value of the devices after separating the devices to be tested from around it based on the guarding method. But, in case that resistance, inductor and capacitor are configured as a parallel circuit on the circuit pattern, values for each device can not be measured because the total impedance value of the parallel circuit is measured. Accordingly, it is impossible to test whether the parallel circuit is good or not in case that the measured impedance value is within the tolerance error. Also, it is difficult to identify that which device among R, L and C of the parallel circuit is bad in case that the measured impedance value is out of the tolerance error. Accordingly, this paper proposes a test method which can enhance the quality and productivity by separating and measuring accurately R, L and C components from the RLC parallel circuits on the device-mounted printed circuit board. First, the RLC parallel circuit to be test is separated electrically from around it using three-terminal guarding technique. And then R, L and C values are computed based on the total impedance values and phase angles between voltage and current of the parallel circuit measured from two AC input signals with other frequency, Finally, the availability and accuracy of the proposed test method is verified by reviewing the simulation results.

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

Analysis on the Fuel Cell Performance by the Impedance Method (임피던스법을 적용한 연료전지의 성능평가)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.918-923
    • /
    • 2007
  • Fuel cell is a modular, high efficient and environmentally energy conversion device, it has become a promising option to replace the conventional fossil fuel based electric power plants. The high temperature fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. Corrosions in molten electrolytes and the electric conductivity across the oxide scale have crucial characteristics. When molten salts are involved, high temperature corrosions become severe. In this sense, corrosions of alloys with molten carbonates have the most severe material problems. Systematic investigation on corrosion behavior of Fe/21Cr/Ti or Al alloy has been done in (62+38)mol% (Li+K)$CO_3$ melt at $650^{\circ}C$ using the electrochemical impedance spectroscopy method. It was found that the corrosion current of these Fe-based alloys decreased with increasing Al or Ti. And Al addition improved the corrosion resistance of this type of specimen and more improvement of corrosion resistance was observed at the specimen added with Al.

Development of Inverse Solver based on TSVD in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 TSVD 기반의 역문제 해법의 개발)

  • Kim, Bong Seok;Kim, Chang Il;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Electrical impedance tomography is a nondestructive imaging technique to reconstruct unknown conductivity distribution based on applied current data and measured voltage data through an array of electrodes attached on the periphery of a domain. In this paper, an inverse method based on truncated singular value decomposition is proposed to solve the inverse problem with the generalized Tikhonov regularization and to reconstruct the conductivity distribution. In order to reduce the inverse computational time, truncated singular value decomposition is applied to the inverse term after the generalized regularization matrix is taken out from the inverse matrix term. Numerical experiments and phantom experiments have been performed to verify the performance of the proposed method.

Measurement of the Biological Active Point using the Bio-electrical impedance analysis based on the Adaptive Frequency Tracking Filter (적응주파수추적필터기반의 생체임피던스분석을 통한 생물학적활성점측정에 관한 연구)

  • Park, Hodong;Lee, Kyoungjoung;Yeom, Hojun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.109-114
    • /
    • 2013
  • The biological active points (BAP) are known as low resistance spots or good electro-permeable points. In this paper, a new method for BAP detection using the bio-impedance measurement system based on the adaptive frequency tracking filter (AFTF) and the transition event detector is presented. Also, the microcontroller process continuous time demodulation of the modulated signal by multi frequency components using the AFTF. The transition event detector based on the phase space method is applied about each frequency using the BAP equivalent model which is proposed.

An Investigation into the Actual Condition of Electrical Equipments Installation for the Inspection Method Development Based on IEC 60364 (IEC 60364기반 건축전기설비 점검기법 개발을 위한 현장실태 조사)

  • Jung, Jin-Soo;Han, Woon-Ki;Lee, Han-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.36-41
    • /
    • 2009
  • In this paper an Investigation into the actual condition of electrical equipment installation for the inspection method development based on IEC 60364. The analysis objects are the difference between electrical equipments installation in korea & electrical equipments installation based on the IEC 60364. The measurement elements are loop impedance, operating characteristic of circuit breaker and protective conductor continuance. As a result, the korea electrical equipments installation was almost same the TT system but some different of protective conductor continuance. Electrical equipments installed TN-C-S has noting problem about installation but manager dose not understand about IEC 60364.

Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic

  • Xie, Jiale;Ma, Jiachen;Sun, Yude;Li, Zonglin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.643-653
    • /
    • 2016
  • The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities, measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent circuit model has been constructed with respect to a LiFePO4 battery by approximating the electrochemical impedance spectrum (EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of Li-ion batteries.

Improvement of Connector Performance Using Analysis of Characteristic Impedance (특성임피던스 분석을 사용한 커넥터 성능향상)

  • Yang, Jeong-Kyu;Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.47-53
    • /
    • 2011
  • The signal transmission properties of the connector such as insertion loss and return loss are investigated using analysis procedure of S-parameter simulation, equivalent model extraction, and characteristic impedance calculation. S-parameter simulation is performed by connector's modeling and solving based on 3-dimensional finite element method. The connector's equivalent model of ${\pi}$ type is are proposed and extracted with an optimization process of circuit analysis simulator. The characteristic impedance of the connector is calculated with results of circuit analysis simulation and S-parameter data. According to the connector's characteristic impedance, it's revised design is carried out. In this work, the connector's effective contact area is increased and its body is applied as a high dielectric material in order to increase its capacitance and then obtain impedance matching. Therefore, return loss of the connector is improved by approximately 10 dB due to its design revision.

Numerical Calculation of Longitudinal Current Distribution in Grounding Electrode for Analyzing the Grounding Impedance (접지임피던스 분석을 위한 접지전극의 전류분포 수치계산)

  • Cho, Sung-Chul;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • The current distribution passing through grounding electrode is required for calculating an impedance of grounding electrode using the electromagnetic field model. In this paper the numerical calculation for currents passing through a grounding electrode as a function of frequency was given. The proposed approach is based on the wire antenna model(AM) in the frequency domain. The Pocklington's equation driven from the wire antenna theory was numerically calculated by the Galerkin's method. The triangle function was applied to both the basis function and the weighting function. The current distribution of a horizontal ground electrode was simulated in MATLAB. Also these results were compared with the data obtained from the CDEGS HIFREQ calculation.