• Title/Summary/Keyword: image similarity retrieval

Search Result 186, Processing Time 0.028 seconds

A Design for Efficient Similar Subsequence Search with a Priority Queue and Suffix Tree in Image Sequence Databases (이미지 시퀀스 데이터베이스에서 우선순위 큐와 접미어 트리를 이용한 효율적인 유사 서브시퀀스 검색의 설계)

  • 김인범
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.613-624
    • /
    • 2003
  • This paper proposes a design for efficient and accurate retrieval of similar image subsequences using the multi-dimensional time warping distance as similarity evaluation tool in image sequence database after building of two indexing structures implemented with priority queue and suffix tree respectively. Receiving query image sequence, at first step, the proposed method searches the candidate set of similar image subsequences in priory queue index structure. If it can not get satisfied results, it retrieves another candidate set in suffix tree index structure at second step. The using of the low-bound distance function can remove the dissimilar subsequence without false dismissals during similarity evaluating process between query image sequence and stored sequences in two index structures.

  • PDF

Video Retrieval System supporting Content-based Retrieval and Scene-Query-By-Example Retrieval (비디오의 의미검색과 예제기반 장면검색을 위한 비디오 검색시스템)

  • Yoon, Mi-Hee;Cho, Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.105-112
    • /
    • 2002
  • In order to process video data effectively, we need to save its content on database and a content-based retrieval method which processes various queries of all users is required. In this paper, we present VRS(Video Retrieval System) which provides similarity query, SQBE(Scene Query By Example) query, and content-based retrieval by combining the feature-based retrieval and the annotation-based retrieval. The SQBE query makes it possible for a user to retrieve scones more exactly by inserting and deleting objects based on a retrieved scene. We proposed query language and query processing algorithm for SQBE query, and carried out performance evaluation on similarity retrieval. The proposed system is implemented with Visual C++ and Oracle.

Image Classification Approach for Improving CBIR System Performance (콘텐트 기반의 이미지검색을 위한 분류기 접근방법)

  • Han, Woo-Jin;Sohn, Kyung-Ah
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.816-822
    • /
    • 2016
  • Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.

Image Retrieval using Modified Color Correlogram (변형된 칼라 코렐로그램을 이용한 영상검색)

  • 안명석;조석제
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.940-946
    • /
    • 2002
  • This paper proposes an image retrieval method to use the modified color correlogram. For retrieving images with less effect of the size variation of the regions in an image, the modified color correlogram is extracted by normalizing auto-correlogram and cross-correlogram of the color correlogram from a color image, and the similarity of two images is calculated by putting the less weight to the auto-correlogram of the modified color correlogram. Because proposed method uses the information of the color correlogram more effectively, we can get better results than that of color correlogram method. In the experiments, the performance of the proposed method is better as compared with that of the color cerrelogram method.

Rearranged DCT Feature Analysis Based on Corner Patches for CBIR (contents based image retrieval) (CBIR을 위한 코너패치 기반 재배열 DCT특징 분석)

  • Lee, Jimin;Park, Jongan;An, Youngeun;Oh, Sangeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2270-2277
    • /
    • 2016
  • In modern society, creation and distribution of multimedia contents is being actively conducted. These multimedia information have come out the enormous amount daily, the amount of data is also large enough it can't be compared with past text information. Since it has been increased for a need of the method to efficiently store multimedia information and to easily search the information, various methods associated therewith have been actively studied. In particular, image search methods for finding what you want from the video database or multiple sequential images, have attracted attention as a new field of image processing. Image retrieval method to be implemented in this paper, utilizes the attribute of corner patches based on the corner points of the object, for providing a new method of efficient and robust image search. After detecting the edge of the object within the image, the straight lines using a Hough transformation is extracted. A corner patches is formed by defining the extracted intersection of the straight line as a corner point. After configuring the feature vectors with patches rearranged, the similarity between images in the database is measured. Finally, for an accurate comparison between the proposed algorithm and existing algorithms, the recall precision rate, which has been widely used in content-based image retrieval was used to measure the performance evaluation. For the image used in the experiment, it was confirmed that the image is detected more accurately in the proposed method than the conventional image retrieval methods.

Robust Character Image Retrieval Method Using Bipartite Matching (Bipartite Matching을 이용한 강인한 캐릭터 영상 검색 방법)

  • 이상엽;김회율
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.136-144
    • /
    • 2002
  • In this paper, a novel approach that makes use of both shape and color information to retrieve character images in terms of similarity distance from a large-capacity image database or from a streaming image database, in particular, character image logo or trademark. In order to combine both features of completely different characteristics bipartite matching has been employed in computing similarity distance, The proposed method turned out to bealso very effective in matching natural object or human-drawn images whose shape varies substantially.

A Relevance Feedback Method Using Threshold Value and Pre-Fetching (경계 값과 pre-fetching을 이용한 적합성 피드백 기법)

  • Park Min-Su;Hwang Byung-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1312-1320
    • /
    • 2004
  • Recently, even if a lot of visual feature representations have been studied and systems have been built, there is a limit to existing content-based image retrieval mechanism in its availability. One of the limits is the gap between a user's high-level concepts and a system's low-level features. And human beings' subjectivity in perceiving similarity is excluded. Therefore, correct visual information delivery and a method that can retrieve the data efficiently are required. Relevance feedback can increase the efficiency of image retrieval because it responds of a user's information needs in multimedia retrieval. This paper proposes an efficient CBIR introducing positive and negative relevance feedback with threshold value and pre-fetching to improve the performance of conventional relevance feedback mechanisms. With this Proposed feedback strategy, we implement an image retrieval system that improves the conventional retrieval system.

  • PDF

Similarity-Based Subsequence Search in Image Sequence Databases (이미지 시퀀스 데이터베이스에서의 유사성 기반 서브시퀀스 검색)

  • Kim, In-Bum;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.501-512
    • /
    • 2003
  • This paper proposes an indexing technique for fast retrieval of similar image subsequences using the multi-dimensional time warping distance. The time warping distance is a more suitable similarity measure than Lp distance in many applications where sequences may be of different lengths and/or different sampling rates. Our indexing scheme employs a disk-based suffix tree as an index structure and uses a lower-bound distance function to filter out dissimilar subsequences without false dismissals. It applies the normaliration for an easier control of relative weighting of feature dimensions and the discretization to compress the index tree. Experiments on medical and synthetic image sequences verify that the proposed method significantly outperforms the naive method and scales well in a large volume of image sequence databases.

Implementation on the Filters Using Color and Intensity for the Content based Image Retrieval (내용기반 영상검색을 위한 색상과 휘도 정보를 이용한 필터 구현)

  • Noh, Jin-Soo;Baek, Chang-Hui;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.122-129
    • /
    • 2007
  • As the availability of an image information has been significantly increasing, necessity of system that can manage an image information is increasing. Accordingly, we proposed the content-based image retrieval(CBIR) method based on an efficient combination of a color feature and an image's shape and position information. As a color feature, a HSI color histogram is chosen which is known to measure spatial of colors well. Shape and position information are obtained using Hu invariant moments in the luminance of HSI model. For efficient similarity computation, the extracted features(Color histogram, Hu invariant moments) are combined and then measured precision. As a experiment result using DB that was supported by http://www.freefoto.com, the proposed image search engine has 93% precision and can apply successfully image retrieval applications.

A Centroid-based Image Retrieval Scheme Using Centroid Situation Vector (Centroid 위치벡터를 이용한 영상 검색 기법)

  • 방상배;남재열;최재각
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.126-135
    • /
    • 2002
  • An image contains various features such as color, shape, texture and location information. When only one of those features is used to retrieve an image, it is difficult to acquire satisfactory retrieval efficiency. Especially, in the database with huge capacity, such phenomenon happens frequently. Therefore, by using moi·e features, efficiency of the contents-based image retrieval (CBIR) system can be improved. This paper proposes a technique to consider location information about specific color as well as color information in image using centroid situation vector. Centroid situation vectors are calculated for specific color of the query image. Then, location similarity is determined through comparing distances between extracted centroid situation vectors of query image and target image in the database. Simulation results show that the proposed method is robust in zoom-in or zoom-out processed images and improves discrimination ability in fliped or rotated images. In addition, the suggested method reduced computational complexity by overlapping information extraction, and that improved the retrieval speed using an efficient index file.