• Title/Summary/Keyword: image similarity retrieval

Search Result 186, Processing Time 0.026 seconds

Collaborative Similarity Metric Learning for Semantic Image Annotation and Retrieval

  • Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1252-1271
    • /
    • 2013
  • Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.

Learning Discriminative Fisher Kernel for Image Retrieval

  • Wang, Bin;Li, Xiong;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.522-538
    • /
    • 2013
  • Content based image retrieval has become an increasingly important research topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The retrieval systems rely on a key component, the predefined or learned similarity measures over images. We note that, the similarity measures can be potential improved if the data distribution information is exploited using a more sophisticated way. In this paper, we propose a similarity measure learning approach for image retrieval. The similarity measure, so called Fisher kernel, is derived from the probabilistic distribution of images and is the function over observed data, hidden variable and model parameters, where the hidden variables encode high level information which are powerful in discrimination and are failed to be exploited in previous methods. We further propose a discriminative learning method for the similarity measure, i.e., encouraging the learned similarity to take a large value for a pair of images with the same label and to take a small value for a pair of images with distinct labels. The learned similarity measure, fully exploiting the data distribution, is well adapted to dataset and would improve the retrieval system. We evaluate the proposed method on Corel-1000, Corel5k, Caltech101 and MIRFlickr 25,000 databases. The results show the competitive performance of the proposed method.

An Effective Similarity Measure for Content-Based Image Retrieval using MPEG-7 Dominant Color Descriptor (내용기반 이미지 검색을 위한 MPEG-7 우위컬러 기술자의 효과적인 유사도)

  • Lee, Jong-Won;Nang, Jong-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.8
    • /
    • pp.837-841
    • /
    • 2010
  • This paper proposes an effective similarity measure for content-based image retrieval using MPEG-7 DCD. The proposed method can measure the similarity of images with the percentage of dominant colors extracted from images. As the result of experiments, we achieved a significant improvement of 18.92% with global DCD and 47.22% with local DCD in ANMRR than the result by QHDM. This result shows that the proposed method is an effective similarity measure for content-based image retrieval. Especially, our method is useful for region-based image retrieval.

An approach for improving the performance of the Content-Based Image Retrieval (CBIR)

  • Jeong, Inseong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.665-672
    • /
    • 2012
  • Amid rapidly increasing imagery inputs and their volume in a remote sensing imagery database, Content-Based Image Retrieval (CBIR) is an effective tool to search for an image feature or image content of interest a user wants to retrieve. It seeks to capture salient features from a 'query' image, and then to locate other instances of image region having similar features elsewhere in the image database. For a CBIR approach that uses texture as a primary feature primitive, designing a texture descriptor to better represent image contents is a key to improve CBIR results. For this purpose, an extended feature vector combining the Gabor filter and co-occurrence histogram method is suggested and evaluated for quantitywise and qualitywise retrieval performance criterion. For the better CBIR performance, assessing similarity between high dimensional feature vectors is also a challenging issue. Therefore a number of distance metrics (i.e. L1 and L2 norm) is tried to measure closeness between two feature vectors, and its impact on retrieval result is analyzed. In this paper, experimental results are presented with several CBIR samples. The current results show that 1) the overall retrieval quantity and quality is improved by combining two types of feature vectors, 2) some feature is better retrieved by a specific feature vector, and 3) retrieval result quality (i.e. ranking of retrieved image tiles) is sensitive to an adopted similarity metric when the extended feature vector is employed.

Region Division for Large-scale Image Retrieval

  • Rao, Yunbo;Liu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5197-5218
    • /
    • 2019
  • Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

Study of the New Distance for Image Retrieval (새로운 이미지 거리를 통한 이미지 검색 방안 연구)

  • Lee, Sung Im;Lim, Jo Han;Cho, Young Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.382-387
    • /
    • 2014
  • Image retrieval is a procedure to find images based on the resemblance between query image and all images. In retrieving images, the crucial step that arises is how to define the similarity between images. In this paper, we propose a new similarity measure which is based on distribution of color. We apply the new measure to retrieving two different types of images, wallpaper images and the logo of automobiles, and compare its performance to other existing similarity measures.

An Implementation of Retrieval System for Medical Image Management (의료영상 관리를 위한 검색시스템 구현)

  • Kim, Kyung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.61-67
    • /
    • 2009
  • PACS and Medical Image System use only high level metadata in retrieving desired image nowadays. In order to retrieve Medical Image Data more efficiently, it would be needed to retrieve similarity by utilizing low level metadata as well as keyword retrieval by high level metadata. Thus, In this paper presents that it has realized similarity retrieval by low level metadata on the basis of MPEG-7, and keyword retrieval by high level metadata of DICOM base. It would be also available to look into medical image data in various methods and read accurate image promptly for diagnosis and treatment by retrieval with integrating two metadata.

An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases

  • Zhuang, Yi;Chen, Shuai;Jiang, Nan;Hu, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2359-2376
    • /
    • 2022
  • With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.