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Abstract 
 

Content based image retrieval has become an increasingly important research topic for its 

wide application. It is highly challenging when facing to large-scale database with large 

variance. The retrieval systems rely on a key component, the predefined or learned similarity 

measures over images. We note that, the similarity measures can be potential improved if the 

data distribution information is exploited using a more sophisticated way. In this paper, we 

propose a similarity measure learning approach for image retrieval. The similarity measure, so 

called Fisher kernel, is derived from the probabilistic distribution of images and is the function 

over observed data, hidden variable and model parameters, where the hidden variables encode 

high level information which are powerful in discrimination and are failed to be exploited in 

previous methods. We further propose a discriminative learning method for the similarity 

measure, i.e., encouraging the learned similarity to take a large value for a pair of images with 

the same label and to take a small value for a pair of images with distinct labels. The learned 

similarity measure, fully exploiting the data distribution, is well adapted to dataset and would 

improve the retrieval system. We evaluate the proposed method on Corel-1000, Corel5k, 

Caltech101 and MIRFlickr 25,000 databases. The results show the competitive performance 

of the proposed method. 
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1. Introduction 

Retrieving images according to users’ interests from database is particular valuable for 

search engines. Approaches based on textual metadata or keywords face with a number of 

challenges [1]. First, it is inherently difficult to describe the content of images using textual 

metadata, and the description is made even harder for the diversification and rapid growth of 

image datasets. Second, manual annotation for large image datasets is prohibitively expensive, 

while the surrounding or contextual text is unreliable. Under such circumstances, content 

based image retrieval (CBIR) is particularly promising since it does not need textual metadata 

or keywords to describe the image content. 

The CBIR systems [2] are composed of two core components: the feature representation of 

images and the similarity measures over image features (we do not distinguish similarity 

measure and distance measure because they are convertible). For feature representation, 

CBIR usually represents each image using a set of descriptors which are expected to be well 

descriptions of the semantic content of images. The similarity measures are defined over the 

features and expected to reflect the similarity of the semantic content of images. The common 

target [3] of the two components is to merge the so called semantic gap between low-level 

features and high-level semantic content. In this paper, we focus on the similarity measures. 

Some CBIR systems adopt predefined similarity measures [4], e.g., Euclidean distance, 

Gaussian kernel and L1 distance. However, predefined distance measures share some 

limitations. Especially they fail to adapt the data distribution [5] which varies along databases. 

To alleviate the semantic gap in CBIR, a much more promising way, is to learn the similarity 

measure from the database. Considerable machine learning techniques [3,6,7,8,9] have been 

used to learn the similarity metric from data over the past few years. According to the usage of 

label information, algorithms for similarity metric learning can be categorized into two 

classes: unsupervised methods and and supervised methods [3].  

Unsupervised methods attempt to find an underlying low dimensional embedding or a 

similarity measure from high dimensional input data, under certain criterion. An effective 

criterion is to keep the geometric relationships among most of the observed data. Approaches 

under this criterion include principle component analysis (PCA) [10], locality constrained 

linear coding (LLC) [6], locally linear embedding (LLE) [7]. Although these methods are 

good at utilizing unlabeled data which is easy to obtain, they fail to exploit class label which is 

very informative in similarity learning. Supervised methods aim to learn similarity metrics by 

keeping the data within the same classes close and keeping the data of different classes 

separated. Representative approaches include neighborhood components analysis (NCA) [8], 

large margin nearest neighborhood classification (LMNN) [11], local distance metric learning 

(LDML) [9] and linear transformation based metric learning (LTML) [33]. As a common 

insight from the above discussions, learning based metrics are adaptive to data much better. 

Those approaches, however, do not fully exploit the distribution information which are shown 

to be very information in image representation [28].   

A probabilistic branch of methods, probabilistic similarity [29,39-43], recently received 

increasing attention. These methods derive the explicit feature mapping or similarity measure 

based on the probabilistic distribution over the data. Consequently, they are able to exploit the 

abilities of probability models, e.g. dealing with structured data and exploiting hidden 

variables. The representative methods include probability product kernels [39], Kullback 
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Leibler divergence based similarity [40], Fisher kernel [29], free energy score space [42]. 

These methods can be unsupervised or supervised. However, of them, unsupervised methods 

are unable to exploit label information, while supervised methods are not flexible enough, i.e., 

unable to embed into specified classifiers. 

In this paper, we propose a similarity learning algorithm, discriminative Fisher kernel 

(DFK) , for CBIR. It is able to exploit label information and embed to any classifier. First, we 

employ Gaussian Mixture Models (GMMs) to model the distribution of image features, which 

has been validated to be an effective way [28]. Second,we derive Fisher kernel [29] based on 

the GMMs, where Fisher kernel is a similarity function over the observed variable (image 

features), hidden variables (indicators of mixture centers) and model parameters. Third, to 

exploit label information, we propose a supervised learning method for Fisher kernel. There 

are two advantages of the proposed method: (1) the probabilistic modeling allows us to exploit 

hidden information and well adapt to data distribution; (2) the discriminative learning method 

fully utilizes label information in a computationally effective way.  

The remainder of the paper is organized as follows. Section 2 reviews the related works. 

Section 3 presents the details of Fisher kernel based similarity learning approach. Our 

approach is compared with the state-of-the-art approaches over three popular image databases 

in Section 4. Section 5 draws a conclusion.   

2. Related Works 

In this paper, we focus on supervised similarity learning based on probabilistic similarity (see 

the categorization of similarity learning methods in Section 1). We in this section review the 

supervised similarity learning and probabilistic similarity methods, leaving other methods out. 

Supervised similarity metric learning approaches attempt to learn a similarity metric from 

a set of equivalence constraints (for image pair within the same class) and inequivalence 

constraints (for image pair of the different classes) between images. The optimal distance 

metric is eventually found by keeping images in equivalence constraints close and images in 

inequivalence constraints well separated. Xing et al. [12] formulates the task into a constrained 

convex optimization problem by minimizing the distance between images in the same classes 

such that images from different classes are well separated. Relevant Components Analysis 

(RCA) [13] makes use of side information to learn a Mahalanobis distance from the 

equivalence constraints. Discriminative Component Analysis (DCA) and kernel DCA [14] 

extend RCA by incorporating equivalence constraints and exploring nonlinear transformation 

from context.  Neighborhood Component Analysis (NCA) [8] extends nearest neighbor 

classifiers to component analysis, and is further extended to Large-Margin Nearest Neighbor 

(LMNN) [11] by consider margin. [16] learns local perceptual distance functions for image 

retrieval and classification, where the distance function is a combination of several local 

distance functions. [34] aims to learn a Mahalanobis distance metric from pairwise constraints 

in the form of must-links (i.e. links indicating the pair of data points must in the same class ) 

and cannot-links (i.e. links indicating the pair of data points must in different classes). [35] 

takes context information associated with media content into consideration when learning 

similarity metrics. [36] proposes an image matching approach which leverages discriminative 

learning techniques to compute a better similarity metric for predicting whether two images 

are similar. Many recent studies [17-22,33] focus on the cooperation of metric learning, 

relevance feedback, dimensionality reduction, Bayesian learning and kernel learning.  
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Probabilistic similarity methods start from the modeling of the data distribution which 

encodes the interior information of the data. Mathematically, the probabilistic similarity is a 

function over the quantities of the data distribution. Probability product kernels [39] treat the 

posteriors for given samples as the representation of samples, and define the similarity as the 

expectation of the product of the two posterior. [40] represents samples as some distributions 

and uses Kullback–Leibler divergence to measure the similarity of samples. [41] builds a 

hierarchical probabilistic model to learn image representation and similarity. Fisher kernels 

(FK) [29] derive explicit feature mapping for samples by considering how the samples affect 

the model parameters, and define the similarity as the inner product of the feature mappings of 

any pair of samples. Free energy score space (FESS) [42] and posterior divergence (PD) [43] 

extend FK by considering more informative measures. Although these methods are able to 

utilize label information in terms of class conditional modeling, their abilities can be enhanced 

by means of joint learning of similarity and probabilistic models. As the current researches 

[42,43] show the highly competitive performance of score space methods, we in this paper will 

extend FK to a discriminative learning paradigm.   

The advantages of our method are twofold: (1) compared with non-probabilistic 

similarity learning method, our method can fully exploit data distribution information (e.g., 

hidden variables); (2) compared with probabilistic similarity learning method, our method 

provides a sophisticated way to utilize label information and can be embedded into any 

classifier.  

 

Fig. 1. The graphical illustration of learning discriminative Fisher kernel. 

3. Learning Discriminative Fisher Kernels 

In this section, we proceed to derive the Fisher kernel and propose a discriminative learning 

approach for the kernel. We first employ Gaussian Mixture Models (GMMs) to model the 

distribution because of its effectiveness in image feature modeling [28]. Then we derive the 

Fisher kernel [29] based on GMMs. At last, we further propose a discriminative learning 

method for Fisher kernel. See Fig. 1 for the illustration of the proposed method. 

 

 

https://www.google.com/search?hl=en&newwindow=1&client=firefox-a&hs=haW&tbo=d&rls=org.mozilla:en-US:official&spell=1&q=Mathematically&sa=X&ei=c6zCULCiN-PYigeTtYC4BQ&ved=0CCwQvwUoAA
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3.1. Gaussian Mixture Models 

We here use Gaussian Mixture Models (GMMs) to model the distribution of the image 

features for its effectiveness in image feature modeling [28]. Let RDx  be the observed 

variable (image feature) and 1{ }Kz z  z  be a set of hidden variables (indicator) following 

the Multinomial distribution over K possible events, 

1

( ) {0 1} 1 0, 1k

K
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k k k k kk k
k
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

         z  

where ( )k kP z  . Note that z  is an indication vector. For GMMs, z  indicates that which 

mixture center is selected to generate the sample of x . A mixture center here is a Gaussian 

distribution. Then the conditional distribution, given z , is,  
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where ku  and k are the mean and covariance matrix of the k -th component. Then the joint 

distribution of GMMs can be expressed as,  
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where Let 1{ , }K

k k k  u . For computational efficiency, we assume that the covariance 

matrixes k  are diagonal, i.e., 
2 2

1diag( )k k kD     . Note that this assumption would not 

bring degeneration to the performance in practice [28]. The marginal distribution of GMMs is 

the integration of ( )P  x z  (Eq. (1)) over z ,  
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The GMMs can be learned using Expectation-Maximization (EM) algorithm [32] that 

alternatively maximizes the log likelihood function with respect to the posterior of z  (E-step 

or inference step) and the parameters   (M-step or parameter estimation step). As suggested 

in [43], we let 
1

( ) ( ) k
K zi i
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Q g


z be the posterior of hidden variables, conditioned on 

i
x . 

The E-step updates the posterior of the hidden variable, for each observed sample,  
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where ( | )i i

k kg P z x  is the probability assigning the sample 
i

x  to the mixture center k . 

The M-step updates the parameters of GMMs,  
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1
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The learning algorithm for GMMs is the iteration of the E-step and M-step.  
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3.2. Normalized Fisher kernel 

Although the analytic form of the ( )P x  is available in Eq. (2), the differential operation 

over log ( )P x  is pretty complex because ( )P x  takes the form of summation. We resort 

to the variational lower bound [30] of the log likelihood function, on which the differential 

operation will be very simple,  
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where ( )Q z  is the approximate posterior of z  and takes the same parameterizations with 

( )P z . It is worth noting that using the lower bound will not loss generality, because the lower 

bound equals to the real log likelihood and ( )Q z  equals to the real posterior when using exact 

inference. Having the lower bound ( )F   of log ( )P x , the elements of Fisher score is its 

gradient with respect to model parameters [29],  
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Note that the elements of Fisher score is the expectation over a function of the observed 

variable x , hidden variables z  and model parameters  , where the hidden variables allow 

Fisher kernel to exploit hidden (high level) information and model parameters allow it to adapt 

to data distribution. The complete Fisher score is the combination of those gradients,  
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The normalized Fisher kernel then can be defined as [31],  
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where 0W  is a weight matrix and assumed to be diagonal, i.e., 1diag( )DW w w


    

where D  is the number of dimension of  . Functionally, dw  weights the domination of the 

d -th dimension of   to the similarity, i.e., a dimension with large weight dominates much 
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than a dimension with small weight. In particular, 0dw   indicates that the d -th dimension 

is completely uninformative. Now we have the parameterized Fisher kernel. In the next 

section, we will present the method to determine these parameters.  

3.3. Discriminative learning of Fisher kernel 

Let 
1y ( , , )i i i

Cy y  be the label vector of the sample x i
, where 1i

cy   iif the c -th label of 

all C  labels belongs to the sample x i
 and 0i

cy   otherwise. We consider the 1-NN classifier 

that favors high similarity for samples with same classes. Besides, we also expect that samples 

which are from different classes have low similarities.  
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   y y x x                                     (9) 

where ( )i js y y  is a similarity measure over the two label vectors, and takes a positive value 

(encourage) if they have common labels and takes negative value (inhibition) if they have no 

common label. We choose the sigmoid based function: 
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Given the posterior ( )Q z  over the hidden variable, we minimize the objective function 

( , )O W  using gradient descent,  

 

 

( , )
( ) ( )( ) ( )

( ) ( )( ) ( )

i j
i j i j i j

i j i

i j
i j i j i j

j
i j i

O W
c K

K K

  
 

  

 
 

 





  
    

  

 
    

 



  

y y x x

x x x x

                     (10) 

   2( , )
2 ( ) ( ) ( )|| ||i j i j i j i j

j
i j i

O W
W c K K

W


 



        
 

 y y x x x x        (11) 

where ( )Q z is the pairwise multiplication. 

The complete learning procedure is the iteration of the E-step (Eq. (3)) and M-step 

(Eq. (10) and Eq. (11)), until it converges, which is summarized in Algorithm 1.  
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Algorithm 1 Discriminative learning of Fisher kernel  

1:  Input: training set 
1{(x , y )}i i N

iX  ; iteration number T ; learning rate   

2:  initialize parameters 
0 0,W  

3:  for 1t   to T  do 

4:      
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7:  end for  

8:  Output:  ,T TW   

In the test step, the Fisher kernel similarity of any pair of images x , xi j
can be computed 

using Algorithm 2. 

Algorithm 2 Computing the Fisher kernel similarity  

1:  Input: a pair of images x , xi j
 

2:  infer the posterior parameters 
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 (Eq.(3)) 

3:  infer the posterior parameters 
( )

( )
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j k k
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k kk

N
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
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 (Eq.(3)) 

4:  compute the Fisher kernel similarity using Eq.(6)-Eq.(8)     

5:  Output:  ( )i jK x x   

4. Experiments  

In this section, we proceed to evaluate the proposed method, i.e., discriminative learning of 

Fisher kernel, on four datasets for image retrieval. We compare the proposed method with 

several related methods and several state-of-the-art methods in image retrieval.  

4.1. Databases 

We evaluate the proposed approach on four benchmark image databases: Corel-1000 [14] 

database, Corel5k [23] database, Caltech101 database [24], and MIRFlickr 25,000 database 

[44]. Some sample images of the dabases used in our experiments are shown in Fig. 2. 
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Fig. 2.  Sample images from the databases used in our experiments 

Corel-1000 and Corel5k are two real-world image databases, both of which are subsets of 

the Corel Photo Gallery. The Corel-1000 database includes 10 categories of images, such as 

roses, cats, horses, eagles, etc. Each category has a different semantic meaning and comprises 

of 100 images. There are totally 1,000 images in the Corel-1000 database. The Corel5k 

database is composed of 5,000 images from 50 categories and each category contains 100 

images. Each category represents certain semantic content such as beach, tile, wave, food 

texture, tigers, France, bears, autumn, and tropical plants, etc. The Caltech101 database is used 

for larger scale experiments, which contains 9,196 images. These images are classified into 

101 categories, such as chair, barrel, anchor and dolphin, etc. Different from Corel-1000 and 

Corel5k databases, the number of images varies along category in Catech101 database. The 

MIRFlickr-25000 database is comprised of 25,000 images downloaded from the online 

photo-sharing service Flickr [44] with high-resolution images and text annotations. Those 

images were collected from the web directly to provide a realistic large scale database for 

image retrieval research. The way to use images with semantic categories can help us to 

evaluate the image retrieval performance in an automatical manner, which reduces the 

subjective error induced by manual evaluation.                              

4.2. Image Representation 

Feature representation is very important for a CBIR system due to the diverse visual contents 

of image databases. Here, we represent images using color SIFT descriptors for its excellent 

discrimination power [25]. The performance of color SIFT descriptors have been validated to 

be effective in image annotation and retrieval. In our experiments, four color SIFT descriptors 

(OpponentSIFT, C-SIFT, rgSIFT and RGB-SIFT) recommended by [25] are used to represent 

the visual content of images. To combine these color SIFT descriptors, we simultaneously use 

dense sampling and Harris-Laplace point sampling, which are followed by  leveraging spatial 

pyramid.  

4.3 Performance Measure 

We use a standard performance measure, mean average precision (MAP), in our comparative 

experiments. MAP, widely used in image retrieval, gives a summarized measure of the 

precision-recall curve. Precision for image retrieval can be defined as the percentage of images 

whose ground truth annotations contain the same label as the query image. Average precision 

(AP) focuses on ranking relevant images higher [23], and is the average of the precision values 

at the ranks where relevant items occurs. MAP is then given by averaging AP over all the 

query keywords. 
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4.4 Compared Methods and Experimental Setting 

We will compare our approach, discriminative Fisher kernels, with the baseline method (i.e., 

predefined Euclidean distance) as well as other similarity learning methods. Specifically, 

compared approaches are listed as follows: 

   Euclidean. A baseline method without using metric learning. 

   Xing. Learning the distance metric with nonlinear optimization [12], which allows to derive 

efficient, local-optima free algorithms.   

   DCA. Discriminative components analysis [14], which makes an improvement of RCA by 

using inequivalence constraints. 

   SDPM. A fast and scalable algorithm to learn a Mahalanobis distance [37], which 

formulates the distance metric learning as a convex optimization problem 

   DML-eig. A metric learning method based on an eigenvalue optimization framework [38].  

   LMNN.  Large margin nearest neighbor classification [11] learns a Mahalanobis distance 

metric for kNN classification from labeled samples. 

   FESS. Free energy score space [42], which is a probabilistic similarity approach via 

extending FK by considering more information measures. 

   PD. Posterior divergence similarity measure derived from the probabilistic models over 

images [43], by measuring how samples affect the model parameters.   

   DFK. The proposed discriminative Fisher-kernel based similarity learning approach, which 

is much more adaptive to the database by considering the data distribution. 

We evaluate the retrieval performance under the evaluation criteria in the leave-one-out 

manner. Specifically, a query image is chosen from the test database, and the rest images form 

the gallery. Then, the test image is queried by the above evaluated distance metrics. The 

retrieval performance is evaluated by the mean average precision(mAP). It is worth noting that, 

parameters of Fisher kernel, except the number of mixture centers K  in Eq. (1),  are learned 

from the dataset. We set 60K   throughout the experiments. We will discuss the effect of the 

parameter in Section 4.6. With the learned kernel, for a query, the retrieval algorithm returns 

those images with high similarity with respect to the query. 

 
Table 1. Average Precision for Corel-1000 database on different algorithms 

Category Euclid. Xing DCA SDPM DML-eig LMNN FESS PD DFK 

Butterfly 0.310 0.345 0.390 0.380 0.385 0.378 0.384 0.390 0.410 

Mountain 0.505 0.570 0.635 0.592 0.604 0.625 0.609 0.611 0.645 

Dogs 0.420 0.390 0.500 0.420 0.435 0.437 0.442 0.450 0.502 

Horses 0.775 0.830 0.850 0.835  0.821 0.852 0.809 0.807 0.820 

Cats 0.495 0.640 0.600 0.610 0.615 0.605 0.621 0.630 0.651 

Eagles 0.575 0.665 0.590 0.600 0.570 0.645 0.614 0.625 0.670 

Roses 0.505 0.545 0.610 0.552 0.565 0.599 0.585 0.600 0.630 

Sunset 0.570 0.560 0.395 0.551 0.561 0.486 0.561 0.565 0.584 

Balloon 0.260 0.265 0.240 0.245 0.250 0.246 0.264 0.266 0.242 

Penguins 0.215 0.260 0.470 0.306 0.329 0.315 0.330 0.364 0.473 

mAP 0.463 0.507 0.528 0.509 0.514 0.519 0.522 0.531 0.563 
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4.5 Experiments Results 

To validate the effectiveness of the proposed approach, we firstly perform an experiment 

on Corel-1000 database [14]. In this experiment, we randomly split each dataset into 70% for 

training and 30% for testing, with the former subset for the discriminative Fisher kernel 

learning and the latter subset serving as performance test dataset. For each compared approach, 

we measure the average precision for each category on the top returned images. More 

specifically, we perform comparison for each category on the top 20 returned images. The 

experimental results are summarized in Table 1. The values of mAP, obtained by averaged 

average precision, are used to evaluate the performance of each algorithm towards the whole 

Corel-1000 database. We find that, compared with the baseline approach, both Xing’s 

approach and SDPM obtain a significant improvement. DCA, LMNN and DML-eig show 

competitive performance and outperform Xing’s approach and SDPM. Meanwhile, FESS and 

PD, which are two probabilistic similarity measure learning approaches most close to our 

method, get better results due to the consideration of probabilistic modeling of image 

distribution. Our proposed DFK approach, as shown in Table 1, achieves the best 

performance among these compared approaches in most cases. Specifically, the DFK 

approach outperforms FESS and PD by 4.1% and 3.2% respectively. The reason accounting 

for this improvement is that DFK fully utilizes the label information while FESS and PD do 

not. These convincing results demonstrate the effectiveness of the proposed method for the 

image retrieval. 

 

 
Table 2. Retrieval performance evaluation on Corel5k database using different algorithms 

Algorithm mAP 

Euclidean 0.269 

Xing 0.307 

DCA 0.325 

SDPM 0.315 

DML-eig 0.309 

LMNN 0.310 

FESS 0.316 

PD 0.320 

DFK 0.342 
 

Table 3. Retrieval performance evaluation on Caltech101 database using different algorithms 

Algorithm mAP 

Euclidean 0.155 

Xing 0.175 

DCA 0.186 

SDPM 0.182 

DML-eig 0.179 

LMNN 0.180 

FESS 0.186 

PD 0.187 

DFK 0.204 
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We then conduct experiments on two larger databases: Corel5k and Caltech101 to further 

verify the ability of DFK in adapting to databases. These two datasets share the same 

experimental setting as Corel-1000. The mAP values evaluated on different metric learning 

approaches over Corel5k database are summarized in Table 2. We can see that Xing’s 

approach and DML-eig show competitive performance, both achieving a significant 

improvement over the baseline Euclidean metric. Meanwhile, DCA performs the best in 

comparison with three other distance metric learning approaches, SDPM, DML-eig and 

LMNN. This is because DCA introduces negative constraints and captures complex nonlinear 

relationships among samples, which can be informative. FESS and PD outperform most of the 

above approaches, where FESS and PD respectively achieve 4.7% and 5.1% improvements 

over the baseline Euclidean approach. Obviously, DFK achieves the best performance among 

all. These results should be again credited to its ability in exploiting data distribution 

information and class label information in content based image retrieval. The experimental 

results for the Caltech101 database are shown in Table 3. We can see that, on this challenging 

database, the performance is similar to that on Corel-1000 and Corel5k. On the whole, our 

proposed approach again outperforms other methods. This demonstrates the fact that the 

proposed approach can adapt to databases via probabilistic modeling of images and utilize 

label information by the discriminative learning of Fisher kernel. Specifically, when compared 

with the baseline approach, Xing’s approach, DCA, SDPM, DML-eig and LMNN show 

superiority. Simultaneously, SDPM shows competitive performance with DCA. Also, 

probabilistic approaches (FESS and PD) exhibit superiority over Xing’s approach, SDPM, 

DCA, DML-eig and LMNN. While, as shown in Table 3, our DFK outperforms FESS and PD 

up to 1.8%. This is due to the successful exploitation of label information. 

When large-scale image collections come into the view, the underlying similarity function 

should be able to characterize the content-level similarity between images with large variance. 

To demonstrate the effectiveness of the proposed approach on large-scale image database, we 

evaluate our DFK on MIRFlickr database [44]. In this experiment, we follow the conventional 

training-validation scheme. Specifically, 15,000 images are used for training and the rest 

10,000 images are used for test. We randomly select 1000 images from the test dataset as 

queries and use the rest 24,000 images as the gallery. Among them, 15,000 images are with 

text annotations while the remaining 9,000 images are not. This is a relatively realistic setup. 

We compare DFK with several approaches: Euclidean (the baseline approach), non-negative 

matrix factorization (NNMF) [44], LMNN [11], FESS [42], and PD [43], where NNMF is a 

state-of-the-art image retrieval approach; LMNN is a popular supervised distance metric 

learning method; FESS and PD are two probabilistic similarity learning approaches closely 

related to our proposed method. The results are summarized in Table 4. We observe that 

NNMF and LMNN both make significant improvements over the baseline approach. The 

performances of FESS and PD are superior to NNMF and LMNN, because they exploit the 

data distribution in a more sophisticated way than NNMF and LMNN. Compared with FESS 

and PD, our DFK fully exploits label information which in very informative in content based 

image retrieval. Overall, the proposed DFK achieves the best performance among the 

approaches compared with. 

 

Table 4. Retrieval performance of different algorithms on MIRFlickr database. 

Algorithm mAP 

Euclidean 0.455 

NNMF 0.583 

LMNN 0.586 
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FESS 0.590 

PD 0.595 

DFK 0.619 

 

 

Fig. 3. Retrieval results for the “bear” query. The figure shows the top 10 images returned by our 

approach. The first image is the query image and the relevant images are marked with a tick symbol. 

Fig. 3 shows an example of the image retrieval performed by our DFK approach on 

Corel5k dataset. Given the query image, the system automatically returns the relevant images. 

We have chosen the top ten images here. We can observe that most of the returned images are 

relevant with the query image. Similar results can be found in Fig. 4 and Fig. 5. Note that in 

most cases, the returned images are meaningful.  In sum, the overall experimental results 

demonstrate that the proposed approach are empirically much more effective to learn good 

quality similarity metric than the previous approaches for the performance improvement of 

image retrieval. 

 

 
Fig. 4. Retrieval results for the “rose” query. The figure shows the top 10 images returned by our 

approach. The first image is the query image and the relevant images are marked with a tick symbol. 

 

 
Fig. 5. Retrieval results for the “airplane” query. The figure shows the top 10 images returned by our 

approach. The first image is the query image and the relevant images are marked with a tick symbol. 
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4.6 Discussions 

In this section, we discuss the effects of the parameter K  (Eq. (1)) and the weight function 

( )i js y y  (Eq. (9)) to the retrieval performance. In the above experiments, our observation on 

K  is consistent with  [43]. That is, Fisher kernel shows robustness to the number of mixture 

centers K . However, for the discriminative learning approach in this paper, we find that a 

relative small number 60K   can produce satisfied results. This is different with [28] that 

sets 256K  . A benefit of setting a small K is that it can  effectively reduce the 

computational cost. For the weight function ( )i js y y , we find that (1) a negative value for 

0i j y y  can significantly improve the performance; (2) the method prefers a relative 

small value for 1i j y y  and relative large value for others. 

6. Conclusions 

In this paper, we propose a data-distribution-aware similarity metric learning approach for 

content-based image retrieval. The approach is based on the Fisher kernel, which is derived 

from the probabilistic distribution of the datasets. The Fisher kernel is a function over the 

observed variable (image feature), hidden variables (indicator of mixture centers) and model 

parameters, and allows to fully exploit hidden information and well adapt to data distribution. 

The discriminative learning approach for Fisher kernel incorporates the label information and 

output a kernel which would improve the retrieval performance. Extensive experiments are 

conducted on four benchmark datasets. The convincing experimental results demonstrate the 

effectiveness of our proposed similarity metric learning approach for the image retrieval task.    
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