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Abstract 
 

Automatic image annotation has become an increasingly important research topic owing to its 

key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale 

dataset with large variance. Practical approaches generally rely on similarity measures defined 

over images and multi-label prediction methods. More specifically, those approaches usually 

1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, 

which might be not adaptive enough to datasets; and 2) predict labels separately without taking 

the correlation of labels into account. In this paper, we propose a method for image annotation 

through collaborative similarity metric learning from dataset and modeling the label 

correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) 

image ranking using structural SVM (SSVM), and 2) image annotation using correlated label 

propagation, with respect to the similarity metric. The learned similarity metric, fully 

exploiting the available information of datasets, would improve the two collaborative 

components, ranking and annotation, and sequentially the retrieval system itself. We evaluated 

the proposed method on Corel5k, Corel30k and EspGame databases. The results for 

annotation and retrieval show the competitive performance of the proposed method. 
 

 

Keywords: image retrieval, collaborative similarity metric learning, structural SVM , 

correlated label propagation  
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1. Introduction 

Retrieving images from a huge database, e.g., Internet image database, has become 

increasingly important. Most popular search engines use the surrounding texts as keywords to 

describe images in retrieval. Their performance can be potentially improved by establishing 

the correspondence between images and keywords well describing the content of these images. 

The procedure of automatically establishing such correspondence is known as automatic 

image annotation which has become an active research field in recent years [1][2]. A number 

of approaches, based on computer vision, machine learning and related fields, have been 

proposed to attack this problem. However, image annotation is still highly challenging due to 

the variance of background, the complexity of object overlapping, and so on in images. Even 

though the general problem is quite difficult, significant progress has been made.  

Current image annotation approaches mainly consist of two groups: generative model 

based approaches [3][4] and discriminative model based approaches [5][6]. We will give a 

detailed review in Section 2. In this paper, we focus on discriminative model based approaches 

because of their state-of-the-art performance in image annotation. These approaches are 

composed of three primary components: feature, similarity/distance metric, and label 

prediction strategy. Here, we concentrate on similarity metric and label prediction strategy. 

Our proposed approach is motivated by the limitation issues of the previous approaches with 

regards to the first two components.  

First, some previous approaches utilize predefined similarity/distance measures to judge 

the similarity between images [7], for instance, Euclidean metrics, Gaussian kernel similarity 

measure and L1 distance [8]. These predefined distance metrics ignore the distribution of 

images and their associated keywords, and are less adaptive to the image distribution. To adapt 

to the data distribution, metric learning approaches [9], through optimizing for either image 

ranking or annotation, have been proposed to attack the above limitation. These approaches, 

however, treat ranking and annotation as two separate procedures while they are highly 

dependent in fact.  

Second, previous approaches generally annotates label/keyword independently, rarely 

considering the inherent correlation between the labels [10]. This is not reasonable because the 

correlation between class labels does exist. The conditional probability matrix ( )P column row  

of the keywords of a subset of Corel5K data set is summarized in Fig. 1. The matrix shows that 

the correlation between keywords does exist. For instance, the elements in the 10-th row and 

5-th column is  ( ) 0 57P water ships   , and the elements in the 10-th row and 8-th column is 

( ) 0 00P dog ships   . The conditional probability ( ) 0 57P water ships    is much greater than 

( ) 0 00P dog ships   . That is, the correlation between ships and water is much closer than the 

correlation between ships and dog. This observation suggests that the correlation between 

class labels can be very informative in the label prediction of image annotation.  
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Fig. 1. The conditional probability matrix ( )P column row  of the keywords of Corel5K data set.  

We observe that ranking and annotation procedures are dependent on each other in practice. 

At the annotation step, the nearest images of the input image in ranking are selected to train the 

annotation model; at the retrieval step, images with the same label are reported according to 

the ranking. Motivated by this observation, we propose an integrated approach to tackle the 

above two limitation issues by treating ranking and annotation as a whole. We employ the 

structural SVM [11] with parameterized similarity measure embedding for ranking and 

correlated label propagation with parameterized similarity measure embedding for annotation. 

The correlated label propagation, taking the correlation between labels into account, can 

effectively address the label correlation issue (the second issue). The point as well as the main 

contribution of our proposed approach lies in the the similarity metric learning (the first issue). 

We propose to learn the similarity metric by simultaneously considering the ranking and 

annotation. The idea is to optimize the ranking and annotation with respect to similarity metric, 

encouraging the similarity metric to have less ranking error and annotation error. At the 

annotation step, the learned similarity metric is then used to annotate new input images. The 

proposed approach has the following advantages:  

(1) We present a parameterized similarity measure which allows adapting to the data set, 

and present similarity measure based SSVM for ranking and similarity measure based label 

propagation for annotation, by which, both ranking and annotation can benefit from the 

adaption of similarity measure. Also, label correlation is considered in label propagation 

process.  

(2) We propose a collaborative learning approach for similarity metric, which 

simultaneously optimizes for ranking and annotation with respect to similarity metric. The 

learning approach fully exploits the information on hand for ranking and annotation. The 

resulted problem takes a standard form and can be efficiently solved using cutting-plane 

algorithm [11].  
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2. Related Works 

In this section, we review previous image annotation approaches. We identify two groups of 

approaches: discriminative models based approaches and generative models based approaches. 

We highlight discriminative model based approaches which are closely related to our work.  

Generative models model the distribution of images and explain how can they be generated. 

They can infer and exploit information hidden in images. The hidden information usually 

closely relates to the high level concepts of images. For instance, in PLSA [12] and LDA [3], 

the hidden variable ‘topic’ describes what a set of image patches is. Generative models 

therefore can utilize these additional high level information for annotation. By means of naive 

Bayes classifier, they can be used to perform classification. Among generative models, topic 

models and mixture models are usually used for image annotation. The topic models model the 

images as samples drawn from a specific mixture of topics, in which each topic is a 

distribution over images and keywords. Representative models include LDA, MOM-HDP [4] 

and PLSA. The mixture models define a joint distribution over images and keywords. [13] 

uses a fixed number of mixture components over the images per keyword. [14][15][16] define 

a mixture model over images and keywords using the training images as components.  

Discriminative models for image annotation have been proposed recent years [5][6]. 

Discriminative models directly model the map from images to image labels, by capturing the 

decision bounds among different classes. Specifically, these approaches characterize each 

keyword as a class and learn a separate classifier for the keyword. The classifier is then used to 

predict whether the class label can be assigned to the test image. A variety of discriminative 

models, such as support vector machines (SVM) [6], discriminative kernel type model [5], and 

multiple-instance learning [17] have been been applied to image annotation. Among these 

discriminative approaches, we focus on nearest neighbor based discriminative models.  

Nearest neighbor based discriminative approaches are becoming attractive due to its 

computational efficiency and good performance when the amount of training data is relatively 

large. For example, [18] learns discriminative models in the neighborhoods of test images, 

while label propagation over a similarity graph of both labeled and unlabeled images are 

derived to solve the image annotation problem [19][20]. Among these methods, we pay 

attention to the works most related to our work. A semantic distance function (SDF) is 

proposed in [9], which is learned based on relative comparison relations. To annotate a new 

image, training images are ranked according to SDF towards this image, and their labels are 

then propagated to this image. TagProp [21] is a newly introduced nearest neighbor model 

which predicts keywords by taking a weighted combination of the label absence or presence 

among neighbors. There the weights for neighbors are determined either based on the neighbor 

ranking or its distance. The method assumed that the similarity measure for determining the 

neighbor ranking are predefined without considering its adaption to data instances. In [22], an 

adhoc nearest neighbor label propagation mechanism is introduced. In this method, nearest 

neighbors are determined by a simple combination of several predefined distances. Keywords 

are then propagated from the neighbors to the test image.  

The above approaches vary in formulation and technique. However, they roughly share the 

same limitations as described in Section 1. To overcome these limitations, we propose a new 

approach in the next section.   

 

 



1256                                                               Wang et al.: Collaborative similarity metric learning  for semantic image annotation 

 

3. Proposed Approach for Content-based Image Annotation  

In this section, we will present our method for similarity metric learning by considering both 

image ranking and annotation, and then use the learned metric for ranking and annotation. The 

proposed method is graphically illustrated in Fig. 2. Specifically, given image features, SSVM 

with similarity metric embedding is used for image ranking, and label propagation with 

similarity metric embedding is employed for annotation. In the training procedure, we 

determine the similarity metric by optimizing for ranking and annotation with respect to 

similarity metric. In the annotation procedure, we first rank the input image using SSVM with 

learned similarity metric and then perform annotation using correlated label propagation (over 

the related training images in ranking) with learned similarity metric. 

 

Fig. 2. The graphical illustration of the proposed approach. 

3.1. Parameterized Similarity Measure 

We observe that different data sets usually have different distributions. A similarity measure 

well adapting to the data distribution would enhance both image ranking and annotation 

effectively. Suppose that images from a data set lie in the same space mx R . For a pair of 

images i kx x X  , let ( )i kS x x  denote its similarity measure. We adopt the following 

generalized inner product as the similarity measure,  

1
( )

2
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where m mA R   is a semi-definite matrix. It can be further written as,  

 
 

1 1
( ) ( ) ( )

2 2

1 1
( )

2 2

T T T T
A i k i k k i k i i k

T T T T
i k k i i k k i

F F
F

S x x x Ax x Ax tr Ax x tr Ax x

A x x A x x A x x x x

 
 
 

 
  
 

    

      

                          

               

(2) 

where ()tr  symbolizes the trace operator; 
F

   is the Frobenius inner product which is the 

component-wise inner product of two matrices, i.e., ij ijF i j
A B A B


  .Although this 
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similarity measure is quite simple, it is very effective in real application, in comparison with 

some other measures tested in our experiments. Moreover, the simple form allows embedding 

it to ranking and annotation approaches and developing collaborative learning algorithm, 

which will be presented in the following parts.  

3.2. SSVM with Similarity Metric Embedding for Image Ranking 

Image ranking can be casted to a structured output prediction problem, where the prediction 

result is a complex structure rather than a single quantity. In this paper, we exploit Structural 

SVM (SSVM) for image ranking [11]. First, we introduce some notations and the problem 

setting mathematically. Let  
1

N

i i
X x


  be a set of N  training images, where m

ix R . Let Y  be 

the set of the overall rankings of X . Let X  and X  signify the relevant and irrelevant image 

sets of image x X  respectively. For an image ix , let iy  denote its correct ranking, and ˆ
iy  

denote any other ranking in the output space Y .  

3.2.1. SSVM for Image Ranking 

SSVM has been proved to be promising for building highly accurate models in areas like 

information retrieval, natural language processing and protein structure prediction [23]. We 

apply SSVM to ranking where the image x X  is the input and ranking ŷ  is the output:  

ˆ
ˆ ˆ ˆ( ) argmax ( ) ( )

y Y
y x x y y y


                                              (3) 

where y  is its correct ranking of x ; ŷ  is other possible ranking in Y ;   is a discriminant 

function over all input and output pairs, X Y R    ; ˆ( )y y   is the margin defined between 

two rankings y  and ŷ , which is a non-negative loss function. For a specific input, a 

prediction can be given by maximizing the function   and the loss function over the whole 

output space. Assuming that the discriminative function  takes a linear form: 

ˆ ˆ( ) ( )Tx y x y      where   is a parameter;   is a vector-valued feature map connecting the 

input x  and output ŷ . ˆ( )T x y    can be thought to be a compatibility measure that judges 

how well the output space matches the given input space. Substituting it to Eq. (3), we get:  

ˆ
ˆ ˆ ˆ( ) arg max ( ) ( )T

y Y
y x x y y y 


    

                                         
(4) 

The most commonly used feature map   is the partial order feature mentioned in [24]:  
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 
                               

(5) 

where ( )d ix x   is vector-valued which characterizes the relationship between x  and ix ; 

1ijy    if ix  is placed before jx  in ŷ  and 1ijy    if ix  is placed after jx  in ŷ ;  

Substitute Eq. (5) into Eq. (4), we obtain:  

ˆ
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 
           

(6) 

3.2.2. SSVM with Similarity Measure Embedding 

In Eq. (6), ( )T
d ix x    plays the role of distance and ( )d ix x   is a distance metric. 
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Maximizing the objective function equals to put x  in a proper place in X . Now, we 

generalize the distance metric ( )d ix x   to similarity metric ( )s ix x   in order to learn the 

similarity metric directly. ( )s ix x   is also a vector-valued feature map. Accordingly, we get 

the following expression with regards to similarity metric ( )s ix x   :  

ˆ

ˆ

ˆ ˆ ˆ( ) arg max ( ) ( )

( ) ( )
ˆarg max ( )

s

i j
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y Y

T T
s j s i
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x x x x
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 
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 




   

    

   
    
 
 

              

(7) 

The similarity metric s  has the following property.  

Remark 1  For a test image kx  and a given  , the ranking ŷ  of ix X  obtained by 

ascendingly sorting ( )T
s k ix x      the ranking ŷ  which maximizes ˆ( )

s

T
kx y   . This is a 

generalization of the property of 
d

  [23].  

Now we specify the above similarity measure ( )T
s k ix x    to our parameterized similarity 

measure 1
2

( )T T
i k k i

F
A x x x x   in Eq. (2), where 1

2
( ) ( )T T

s k i i k k ix x x x x x    . Then we have the 

following property.  

Remark 2  Sort ix X  by ascending ( )A k iS x x    the ranking ŷ  which maximizes the 

generalized Frobenius inner product ˆ( , )
s k

F
A x y . This is because, (1) according to Eq. (2), 

sort ix X  by ascending ( )A k iS x x    sort ix X  by ascending ( )s k i F
A x x  ; (2) 

according to Remark 1 , when using ( )s k ix x   with 
s

  in Eq. (7), ix X  sorted by 

ascending ( )s k i F
A x x     the ranking ŷ  which maximizes the generalized Frobenius 

inner product ˆ( , )
s k

F
A x y .  

SSVM with similarity metric defined in Eq. (2) can be expressed as the following 

optimization problem,  

0 0
min ( )

A
tr A c




 


±                                                            
(8) 

1 1

ˆ ˆ ˆ[ ( ) ( )] ( )
N N

i i i i i i iF
i i

s t A x y x y y y N y Y  
 

             
           

(9) 

where   is a slack variable and c  is a weight coefficient.  

3.3. Correlated Label Propagation with Similarity Metric Embedding for Image 
Annotation 

In this section, we focus on the label propagation approach over the learned similarity metric, 

with the correlation between class labels explicitly considered.  

Suppose the number of class labels is z . We consider the problem that gives z  class labels 

to an input image kx , i.e., annotating kx . Let ( (1) , ( ))T
k k kV v v z   be its binary label vector, 

where ( ) 1kv r   iif the r -th label is given to the image kx  and ( ) 0kv r   otherwise. Then 

image annotation is casted to the problem that determines kV  for kx  under a certain criteria. In 

this paper, we consider label propagation based criteria which essentially assesses how close 
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an image kx  belongs to a class r  using a score ( )kp r . The score ( )kp r  is essentially the 

summation of the similarity between kx  and all instances with label r .  

3.3.1. Independent label Propagation 

First we consider the independent label propagation. Kernel-based KNN, as one of the 

representative approaches for label propagation [25], propagates label r  to image kx  

according to the confidence score 
1

( ) ( ) ( )
N

k A k i ii
p r S x x v r


  . The confidence score ( )kp r , 

simply summing all similarities of images with label r , can be overestimated because even if 

ix  is similar to kx  it is not necessarily true to propagate all the class labels of ix  to kx . A 

solution to overcome the overestimation is to release the above equation to the following 

inequality [25]:  

1

( ) ( ) ( )
N

k A k i i

i

p r S x x v r


 
                                               

(10) 

It is worth noting that the confidence score ( )kp r  of r -th label is independently computed, 

without considering its correlation with other labels.  

3.3.2. Correlated Label Propagation with Similarity Metric Embedding 

To overcome the limitation of independent single label propagation, we perform the correlated 

propagation of multiple labels via considering the correlation of class labels [25]. We define 

( )kq V  as the confidence score of propagating any subset of kV  to kx . Similar to Eq. (10), we 

get the following constraints towards ( )kq V :  

1

( ) ( )) ( )
N

T
k A k i k i

i

q V S x x I V V


 
                                      

(11) 

where ( )I a  is an indicator function that outputs 1 for 0a   and 0 otherwise. Note that 

( ) 1T
k iI V V   if kx  and ix  have at least one common label. To link ( )kp r  with ( )kq V , we follow 

the principle that, the confidence score of propagating the labels individually in a label set kV  

to kx  should be no more than that of propagating any subset of kV  to the image kx . Thus we 

have,  

1

( ) ( ) ( )
N

T T
k k k A k i k i

i

P V q V S x x I V V


  
                               

(12) 

where ( (1) ... ( ))T
k k kP p p z   .  

Assuming that the optimal kP  satisfying Eq. (12) is the one which maximally satisfies the 

constraints, we obtain the following optimization problem with regards to kP :  

max
z

k

T
k

P R
P

                                                            
(13) 

1

( ) ( ) {0 1}
N

T T z
k k A k i k i k

i

s t P V S x x I V V V


       
                             

(14) 

where 1( )T
z      are the weights for each class label. To solve the above optimization 

problem, we generalize the indicator function I  to a concave function C , and then use a 
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greedy algorithm [25]. The overall algorithm is summarized in Algorithm 1. We see that the 

estimating of confidence sore ( )kp r  is eventually decided by the concave function C . Here, 

we choose sigmoid function 
( )

1

1
( )

xe
C x


  [25]. It is worth noting that the solution only 

depends on the relative order of  ’s elements and independent with their exact values. With 

the confidence score kP  for image kx , we assign the r -th label to kx  by comparing with a 

threshold thp , i.e., ( ) 1kv r   if ( )k thp r p  and ( ) 0kv r   otherwise.  

Algorithm 1 Determine confidence scores based on similarity metric AS  

1: input: an image kx  to be labeled ; 1 2 z     

2: for 1r   to z  do 

3: construct a label set 1{ }r
r iL i   

4: 
11 1

( ) ( ) ( ) ( ) ( ) ( )
r r

N T T
k r r A k i L i L ii

p r f L f L S x x C V V C V V




 
        

5: end for 

6: output: the confidence scores 1{ ( )}z
k rp r   for an unlabeled image kx . 

3.4. Collaborative Metric Learning via Joint Optimization of Ranking and 
Annotation 

So far, we have a flexible similarity measure over the defined similarity metric A , as 

presented in Eq. (2), which can be embedded into both image ranking and image annotation. In 

this section, we aim to derive an algorithm to learn the similarity metric which simultaneously 

optimizes for ranking and annotation.  

We note that, correlated label propagation is a nearest neighbor based approach, expecting 

images with the same label to have high similarity. For situation considering the label 

correlation as in correlated label propagation, this can be expressed as the following objective 

function,  

1

max ( ) ( )
N

T
A i j i j

A
i j i

S x x I V V
 

  

Note that, only when the images i  and j  have common label, i.e., ( ) 1T
i jI V V  , their 

similarity will contribute to the objective function. This is pretty intuitive for the correlated 

label propagation in Eq. (14). That is,when we maximize the above formula, the right side of 

the inequality of Eq. (14) is also maximized, which enlarges the probable solution space.  

In this paper, we parameterized the similarity by a metric A . Then the problem of learning 

metric A  can be expressed as the following optimization problem,  

0 0
1

min ( ) ( )
( 1)

N N
T T

i k k i
FA

i k i

tr A c A x x I V V
N N




 
 

  



±
                (15) 

1 1

[ ( ) ( )] ( )
N N

i i i i i i iF
i i

s t A x y x y y y N y Y  
 

             
            

(16) 

where 0   is a parameter tuning the balance of the two components.  

Note that the third term of Eq. (15) can be formulated as,  
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1 1

( ) ( )
( 1) ( 1)

N N N N
T T T T

i k k i i k k i
F

i k i i k i F

A x x I V V A x x I V V
N N N N

 

   

  
 
 

 
which is the linear function with respect to matrix A . Then the complete learning problem is,  
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(18) 

This problem can be solved using the cutting plane approach which is used to solve SSVM 

[11]. In the algorithm, we alternately optimize similarity metric A  and update constraint set. 

The constraints here indicate that, for each image ranking pair ( )i ix y , the score of ( )i ix y   

for the correct ranking should be much larger than the score of ˆ( )i ix y   for any other ranking 

in the output space. The algorithm iterates through constructing a working set of the 

constraints and finding the most violated constraint by the current A  and  . The algorithm 

terminates when the constraints are satisfied. The algorithm is summarized in Algorithm 2.  

Algorithm 2 Metric learning via joint optimization 

1: input: image ranking pairs 1{( )}N
i i iy x , c ,   

2: construct a working set T  and initialize T %  

3: repeat 

4:     ( )A    solve Eq. (17) subject to Eq. (18) on T  using cutting plane 

5:     for 1i   to N  do 

6:     ˆ
ˆ ˆ ˆ( ) ( )argmaxi i iy Y F
y y y A x y


       

7:     end for  

8:     1̂
ˆ{( ... )}NT T y y    

9: until 
1 1

ˆ ˆ( ) [( ( )) ( ( )) ] ( )
N N

i i i i i iF Fi i
y y A x y A x y N   

 
            

10: output: A and  . 

The similarity metric A  optimizing both for image ranking and annotation is learned 

ultimately. For a test image kx , we only choose the most related images (top ones of induced 

image ranking) along with the learned similarity metric to participate in label propagation 

process, which can remove irrelevant information in the dataset and lead to great computation 

cost reduction. Then confidence score ( )kp r  for label r  is computed according to Algorithm 

1.  

4. Experiments  

In this section, we extensively evaluate the proposed method on three popular data sets, 

Corel5K, Corel30K and EspGame, for image annotation and retrieval. The proposed method 

will compare with several state-of-the-art methods.  
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4.1. Datasets 

Corel5k The dataset has become an important benchmark for semantic-based image 

annotation and retrieval [14][15][26]. It contains 5 000  images collected from 50  Corel Stock 

Photo CDs. These 5 000  images are partitioned into a training subset of 4500  images and a 

testing subset containing 500  images. There are 50  different topics in the dataset. Each topic 

contains 100  images and every image is annotated with 1  to 5  keywords. The dictionary 

consists of 260  keywords which appear in both training and testing set.  

Corel30k The Corel30k data set is an extension of Corel5k, and is relatively larger than 

Corel5K. It attempts to overcome the limitations of Corel5k [13][27][28], i.e. the image 

annotation system trained fromColel5K might has poor generalization ability. Corel30k 

contains 31 695  images, out of which 90 % images ( 28 525  images) are used to train system 

models and 10  % images ( 3 170  images) are used as a testing set [13]. 950  keywords are 

selected into the vocabulary [13]. Some sample images from both Corel5k and Corel30k are 

shown in Fig. 3.  

EspGame EspGame is obtained from an online game, where two players label the same 

image without any communication and only the same labels are accepted. The players are in 

this way to encouraged to provide meaningful labels to images. The subset we use is 

comprised of 19,659 training images and 2,185 testing images, which is also used in [21]. 

Each image is associated with 4.6 labels on average. This dataset is very challenging.  

 

Fig. 3. Illustration of Corel data together with two example images and their associated keywords 

4.2. Feature Extraction 

The performance of color SIFT descriptors [29] have been validated to be effective in image 

recognition. In this paper, four color SIFT descriptors (OpponentSIFT, C-SIFT, rgSIFT and 

RGB-SIFT) recommended by [29] are used to represent the visual attributes of images. To 

combine these color SIFT descriptors, we followed a similar setting as [29], 1) simultaneously 

using dense sampling and Harris-Laplace point sampling; and 2) leveraging spatial pyramid.  

4.3. Evaluation Criteria 

The performance of image annotation is evaluated by comparing the keywords generated from 

different methods with the ground truth annotations. Similar to previous approaches 

[30][16][13], for each image, we use top five keywords with the largest confidence scores 

obtained in label propagation procedure (i.e., ( (1) ( ))T
k k kP p p z    given by Algorithm 1) as 

its final annotations. Precision and recall of each keyword in the testing set are used as the 

performance criteria. For a keyword r , the total number of images automatically annotated 
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with r  is denoted as tN , the number of images which are correctly annotated with r  is 

defined as cN , and the number of images whose ground truth annotations include r  is 

denoted as gN . Consequently, we present the definitions of precision and recall respectively: 

( ) c tPrecision r N N  ; ( ) c gRecall r N N  . Both of the two criteria are computed over the 

whole keywords contained in the testing dataset. We also take the number of keywords having 

non-zero recall into account, which indicates how effectively the system works. And it is 

defined as N .  

Moreover, we also evaluate the method for semantic image retrieval. Firstly, the annotation 

procedure assigns five keywords with the highest confidence scores to every image. Then 

given a single query, the method can return all the relevant images in the testing 

dataset(’relevant’ means the ground truth annotations have the query keyword), which are 

ranked according to their confidence sores in the label propagation procedure. For the query, 

we choose the top retrieved images. We use mean average precision (MAP) [31] which is a 

standard measure to assess the retrieval performance. Precision for image retrieval can be 

defined as the percentage of images whose ground truth annotations contain the query 

keyword. Average precision (AP) focuses on ranking relevant images higher [15], and is the 

average of the precision values at the ranks where relevant items occurs. MAP is given by 

averaging AP over all the query keywords.  

4.4. Experimental Results for Image Annotation 

To verify the effectiveness of the integration of collaborative similarity metric learning and 

correlated label propagation, we firstly present a group of comparative experiments on corel5k 

and espgame data sets. The experiments are composed of five different implementations: I) 

predefined similarity measure + label propagation [22]; II) predefined similarity measure + 

correlated label propagation; III) Similarity metric learning (optimized for ranking) + 

Correlated label propagation; IV) Similarity metric learning (optimized for annotation) + 

Correlated label propagation; V) Similarity metric learning (optimized for ranking and 

annotation)+ Correlated label propagation. Implementation I is the method mentioned in [22], 

which used predefined similarity measure and propagated keywords without considering the 

correlation between them. Although implementation II uses the same predefined similarity 

metric as in [22], it takes the correlation between labels into consideration in label propagation. 

Implementation III learns the similarity metric via optimizing for image ranking, and performs 

correlated label propagation. Implementation IV learns the similarity metric via optimizing for 

annotation, then performs correlated label propagation. Implementation V is the proposed 

method, in which the similarity metric is learned by simultaneously optimizing for image 

ranking and annotation. And correlation is taken into account in label propagation. The 

experimental results are summarized in Table 1. As shown in Table 1, implementation V 

shows the best performance. These results suggest that, (1) similarity learning and label 

correlation is rather important for image annotation performance; (2) our embedding of 

similarity metric learning into correlated label propagation and the collaborative similarity 

metric learning accounts for the convincing image annotation results of our approach. Fig. 4 

presents the precision-recall curves of implementation I and V on corel5k, with the number of 

annotations from 2 to 10. as shown in Fig. 4, implementation V (the proposed approach) 

consistently outperforms other implementations.  
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Table 1. Performance comparison of different implementations  

 Corel5k EspGame 

Implementation Precision Recall N+ Precision Recall N+ 

I 0.24 0.29 127 0.21 0.24 224 

II 0.26 0.30 130 0.22 0.25 224 

III 0.28 0.31 135 0.24 0.26 227 

VI 0.30 0.32 137 0.23 0.26 226 

V 0.31 0.34 142 0.26 0.27 230 

 

 

Fig. 4. Comparison precision-recall curves of implementation I and V for automatic image annotation 

on Corel5k 
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Table 2. Performance comparison of different automatic image annotation models on the Corel5K  

Method  Precision  Recall  N+  

CRM [16]  0.16  0.19  107  

InfNet[32]  0.17  0.24  112  

PLSA-F[33]  0.19  0.22  112  

MBRM [15]  0.24  0.25  122  

TGLM [19]  0.25  0.29  131  

LASSO [22]  0.24  0.29  127  

MSC [30]  0.25  0.32  136  

SML [13]  0.23  0.29  137  

SML-cDCT [34]  0.28  0.31  132  

GS [35]  0.30  0.33  146  

Ours  0.31  0.34  142  

 

Table 3. Performance comparison of different automatic image annotation models on the EspGame  

Method   Precision   Recall   N+    

MBRM [15]  0.18   0.19   209    

JEC [22]  0.22   0.25   224   

JEC-15 [21]  0.24   0.19   222    

Ours  0.26   0.27   230    

 

To further validate the effectiveness of the proposed method, we compare with several 

state-of-the-art methods for image annotation from different perspectives: CRM [16], InfNet 

[32], PLSA-F [33], MBRM [15], TGLM [19], LASSO [22], MSC [30], SML [13], 

SML-cDCT [34], and GS [35]. We compute the precision and recall of each keyword and use 

the mean of these values to evaluate the proposed method. The experimental results on the 

corel dataset are summarized in Table 2. The results present that our method achieves the best 

performance in comparison with the other approaches. This is due to the successful embedding 

of parameterized similarity metric learning into both image ranking and correlated label 

propagation. Also, the collaborative similarity metric learning enables our approach to be 

adapted to database. To validate this, we also conduct comparative experiments on Espgame 

set using MBRM [15], JEC [22], JEC-15 [21] and report the experimental results in Table 3. 

The results demonstrate that our approach has superior performance as compared to other 

three models in the sense of precision and recall. The above results validate that our method is 

adaptive to data, which benefits from our parameterized similarity measure learning.  Fig. 5 

shows the experimental results of some specific keywords in precision and recall. Fig. 6 

presents some examples of the annotation results produced by the proposed approach on 
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Corel5k and Corel30k datasets. The annotated keywords in italic font are those not contained 

in the ground truth annotations. Even if sometimes our method assigns keywords excluded in 

the ground truth annotations to an image, these keywords are still meaningful for the image in 

fact. This is because the correlated label propagation, which is modeled based on the 

parameterized similarity measure, takes the correlation between keywords into consideration. 

And  the similarity metric is collaboratively optimized both for image ranking and image 

annotation.  

 

Fig. 5. Comparison results of four methods: CRM [16], MBRM [15], MSC [30] and ours  

 

Fig. 6. Comparison of predicted annotations with manual annotations on the Corel dataset 
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4.5. Experimental Results for Semantic Image Retrieval 

In this section, we evaluate our approach for the semantic-based image retrieval task. It is well 

known that users always favors ranked retrieval results, where the top ranked images are the 

most revelent ones. Actually, most users just want to see no more than 10 images for a query. 

Thus, ranking order is of great importance for image retrieval. We use mean average 

precision(MAP) to evaluate the performance of single-keyword retrieval. In the current 

implementation, we firstly compare our method with four related algorithms on Corel5k : the 

continuous-space relevance model (CRM) [16], CRM with rectangular regions as input, called 

CRM-Rectangles [15]; the Multiple-Bernoulli Relevance Model (MBRM) [15]; the 

cross-media relevance model (CMRM) [14].  

Table 4.  Performance comparison of semantic image retrieval results on Corel5k  

Algorithms  All words Words (recall 0) 

Mean average precision on corel5k 

CMRM [14]  0.17  0.20 

CRM [16]  0.24  0.27 

CRM-Rectangles[15]  0.26  0.30 

MBRM [15]  0.30  0.35 

Ours  0.31  0.37 

For a query keyword, the proposed approach returns those images annotated with the 

keyword. Meanwhile, our approach rank these returned images according to the confidence 

score of the keyword. The experimental results are presented in Table 4 our approach 

significantly outperforms the other four methods. More specifically, our approach achieves an 

improvement up to 19% in MAP on all 260 keywords over CRM-Rectangles. When compared 

with MBRM, the proposed approach has an improvement of 3% on all 260 words. For the 

keywords which have positive recall, our approach also exhibits superior performance, 

achieving a gain of 23% and 6% over CRM-Rectangles and MBRM respectively.  The 

effective image annotation performance of our approach directly leads to these significant 

improvements over other approaches we compared with in the image retrieval task. The 

similarity measure based SSVM in the image annotation procedure makes sure that the 

keywords we assigned to an image is optimized, which improves the effectiveness of our 

keyword-based image retrieval. 

Table 5. Performance comparison of semantic image retrieval results on Corel30k  

Algorithms  All words  Words (recall 0)  

Mean average precision on corel30k 

PLSA-WORDS [33]  0.14  0.17  

GM-PLSA [31]   0.23  0.28  

Ours   0.25  0.28  
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Fig. 7. Retrieval results using the proposed approach on Corel dataset.  

We further experiment on Corel30k for image retrieval. Compared with Corel5k, 

Corel30k is relative larger. So far, only a few approaches have experimented on this data set 

[31]. In this experiment, we compare our approach with PLSA-WORDS [33] and GM-PLSA 

[31] For semantic image retrieval. The results are reported in Table 5, where the proposed 

approach significantly outperforms PLSA-WORDS, no matter on all 950 keyword sets or on 

the keyword sets with positive recall, and is competitive with GM-PLSA. These  convincing 

results are consistent with that on Corel5k, which validates that our approach can adapt to data 

and exploit more information hidden in the images. Fig. 7 presents some retrieval results using 

our approach with several keywords as queries. Each  row presents the first five retrieved 

images towards a query. From top to bottom, the semantic queries are buildings, flower, bear 

and railway. The diverse visual appearance of the returned images demonstrates that the 

proposed approach has a good generalization ability. 

5. Conclusions 

In this paper, we propose a new approach for automatic image annotation and retrieval. The 

approach learns similarity metric from data sets and embeds it to both ranking and annotation 

procedures. Inspired by the observation that ranking and annotation are highly dependent each 

other, we take the two procedures into account when learning similarity metric, i.e., 

simultaneously optimizing the objective function for ranking (using structural SVM) and 

annotation (using correlated label propagation) with respect to similarity metric. The 

collaborative metric learning method fully exploits ranking and annotation information, and 

can be effectively solved using cutting plane. Specifically, in the annotation procedure, we 

employ correlated label propagation to utilize the correlation information among the labels. To 

evaluate the proposed approach, we extensively experiment on three large data sets. The 

results show its competitive performance in both annotation and retrieval.  
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