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Abstract 

With the exponential growth of medical image big data represented by high-resolution CT 
images(CTI), the high-resolution CTI data is of great importance for clinical research and 
diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar 
to the input one from the large-scale lung CTI database can effectively assist physicians to 
diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, 
the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the 
internal details of the organ. In traditional supervised deep learning networks, the learning of 
the network relies on the labeling of CTIs which is a very time-consuming task. To address 
this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) 
for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments 
to verify the effectiveness of the WSSENet based on which the CBIR is performed. 
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1. Introduction 

With the rapid development of medical image technology and the advent of the era of big 
data, the number of high-resolution lung CT image(CTI)s increased exponentially. Finding 
similar lung CTIs from the large lung CTI repository enables physicians to efficiently and 
fully learn previous similar cases, thus enabling assisted diagnosis and treatment. 

Generally, a set of lung CTIs is derived from routine cross-sectional scans that acquire 
images of lung and mediastinal windows at various cross-sectional levels of the chest. So a 
set of lung CTIs contains hundreds of lung CTIs covering various parts of a patient's lungs. 
These lung CTIs saved in the database contain more than just information about the images 
themselves, but also the patient-specific therapy measures and results. Through the similarity 
comparison of the CTIs, physicians can find similar CTIs from previous patients who are 
likely to have the same disease since they have the same pathological symptoms. The treat- 
ment can be continuously improved by referring to previous cases based on which finding 
similar lung sections from the lung CTI database will greatly help physicians make correct 
diagnosis. 

Compared with the conventional content-based image retrieval(CBIR) methods, the 
content-based medical image (e.g., CTI) retrieval(CBMIR) requires higher retrieval accuracy. 
In most cases, all of the lung CTIs are generally similar. The main differences between lung 
lesions in patients lie in the shape of the lung lobes and the detail information (e.g., the 
bronchi, blood vessels, etc) inside the lungs. Therefore, it is urgent to develop a novel 
CBMIR method for lung CTIs with higher retrieval accuracy. In addition, due to the complex 
characteristics of the objects in the lung lobes (i.e., location and shape, etc), it is not easy to 
accurately describe and quantify them. Furthermore, deep learning-based similarity measure 
is based on a large amount of data and labels which are provided by medical professionals 
manually. The labeling process of the medical images, however, is a very time-consuming 
and expensive task. For the CBMIR processing, firstly, a deep learning network capable of 
extracting medical image feature descriptors is first trained, then a series of distance 
formulas is applied to calculate the similarity between feature descriptors, finally finding the 
most similar medical images. However, this retrieval method has certain shortcomings. The 
first one is that a large number of labels are necessary to train the network, and the second 
one is that the extracted image descriptors need to be saved in the disk, which entails the 
larger storage overhead. 

To tackle the above challenges, the paper presents a Weakly Supervised Similarity 
Evaluation Network called the WSSENet which is a two-layer-based hierarchical network 
structure: the first layer is responsible for the shape similarity measure of lung lobes, called 
the shape similarity calculator(SSC); while the second layer is to compute the similarity 
metric of the details in the lung lobe, called the detail similarity calculator(DSC). The 
training process of the network is also carried out layer by layer. First, the training set 
required for the SSC is created based on the Spatial Transformation Layer(STL). The 
labeling accuracy in this training set, however, does not reach the required similarity 
assessment accuracy for the lung CTIs, and therefore it belongs to an inexact supervised 
learning [1]. To further improve the effectiveness of similarity measure by focusing the 
accuracy on the soft tissues inside the lung lobes, the DSC needs to be trained. Meanwhile, 
to automatically construct a high accuracy training set for DSC, we need to resort to the 
trained SSC. After the SSC and the DSC are trained by the above process, they are combined 
together to build the hierarchical network structure (i.e., WSSENet), which is used in 
evaluating the similarity between two lung CTIs. Our proposed WSSENet proved to be 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 7, July 2022              2361 

 

highly effective for similarity measurement of lung CTIs. 
The following is a summary of our contributions: 

1. We introduce WSSENet which is a new weakly supervised deep learning network for lung 
CTI similarity assessment. 

2. We present a novel automatic labeling approach for similarity labeling for the lung CTIs. 
3. We conduct extensive experimental evaluation based on real datasets to verify the 

effectiveness and efficiency of our techniques. 
The rest of the paper is laid out below: Section 2 reviews the previous work directly 

related to ours. Section 3 presents a systematic study of the WSSENet-based method for lung 
CTI similarity analysis. Section 4 introduces the training process of the WSSENet. Section 5 
evaluates our algorithms with extensive experiments. Finally, Section 6 concludes the paper 
with a summary of findings and the directions of future work. 

2. Related Work 
Content-based medical image retrieval essentially computes the similarity between two 
medical images by some similarity metrics (e.g., Euclidean distance). Due to the high- 
dimensional characteristics of medical images, however, the efficiency of calculation using 
the aforementioned method is quite low. Researchers have begun to consider approaches for 
extracting the internal features of medical images. The similarity retrieval of medical images 
may be done by extracting the feature vectors that can represent the features of medical 
images and then computing the similarity between the feature vectors. The feature extraction 
research has gone through two stages. 

The feature extraction in the first stage was primarily focused on the extraction of low- 
level visual features that are the fundamental image features that the human eye can see, 
such as color, texture, and shape, etc. Such basic image features, however, are vulnerable to 
contamination by noise. Representative features of medical images, on the other side, are 
localized, therefore researchers began to concentrate on extracting local visual features. 
Mizotin et al. [2] combined SIFT features with the bag of visual words (BoVWs) algorithm 
to obtain an excellent retrieval method of brain MRI images, especially for Alzheimer's 
disease images [3].The Idiap research team [4] combined local binary patterns (LBP) with 
modSIFT [5], which is used to characterize image textures. This fused feature achieves a 
satisfactory retrieval on IRMA dataset. Pan et al. [6] first modeled brain CT images and 
proposed an uncertain location graph (ULG) structure that can be used to better express 
multiple textures of the brain. Using an index structure, a method for computing the ULG 
similarity was proposed to speed up the retrieval performance with 80% search precision rate. 
Karthik et al. [7] tried to combine the image features with different modalities to build a 
hybrid feature model based on which the CBIR processing can be effectively performed. 
Sampathila et al. [8] presented a CBIR method using image features (e.g., color, shape, and 
texture) to represents and retrieves images in a large database that are similar to a given 
query image. These features are determined based on grayscale co-occurrence-based Haralik 
features and histogram-based cumulative distribution function (CDF) with excellent results 
on radiological image retrieval. 

As visual features often do not accurately capture the high-level semantic features of 
medical images well, so in the second stage, with the advancement of deep learning 
techniques, researchers have focused on employing the deep learning techniques to explore 
the high-level semantic features in medical images. Shin et al. [9] have fine-tuned the CNN 
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model and pre-trained it on the ImageNet dataset, and then used this pre-trained model to 
extract features, which is a typical transfer learning idea. Sundararajan et al. [10] used a 
variant of the CNN model to extract features from avascular necrosis(AN) images to 
implement retrieval. They adopted the median filter (MF) in image preprocessing to remove 
the noise in the image, and then obtained the features of medical images, the similarity 
between features was measured by Hamming distance. Khatami et al. [11] came up with a 
hierarchical structure for medical image retrieval. In the first layer, they use CNN to get the 
categories to which the images are most likely to belong, then in the second layer, the images 
of the same category are formed into a search space by Radon transform to further 
implement the retrieval. Since then, Khatami et al. [12] has proposed a two-step hierarchical 
shrinking technique using CNN transfer learning and a Radon projection pool for medical 
image retrieval. Ma et al. [13] fused the semantic and visual similarities between the query 
image and each image in the database as the similarity between images. For the semantic 
features, the images were classified into multiple cases and classified with support vector 
machine. The visual features (i.e., HOG-based BoVW, wavelet features, LBP and CT-valued 
histogram) were extracted, from which the optimal sub-features were selected. 

To quickly retrieve medical images from large datasets, hash-based methods were 
proposed which project high-dimensional features into a low-dimensional space and then 
generate compact binary codes. Lai et al. [14] presented a deep neural network hashing 
(DNNH) method that describes more complex semantic information by using triplet-based 
constraints. Liu et al. [15] proposed a deep supervised hashing method (DSH) that takes 
pairs of images (similar/dissimilar) as training input to a CNN and encourages the output of 
each image to be close to the discrete value, and their extracted features obtain excellent 
retrieval results. Cai et al. [16] designed a new loss function based on CNN with hash coding 
to learn models to make images belonging to the same class with similar features, and the 
proposed method achieved satisfactory results. 

3. The WSSENet 

In this section, we first provide the preliminaries and a system framework of the WSSENet 
for lung CTI similarity analysis. Next, the dataset generator and similarity calculator are 
presented in Sections 3.2 and 3.3, respectively. 

Similarity Calculator

Output

STL

Input

512*512*1

512*512*1

Dataset Generator

Sim
Score

InputImage 
Group DSC

SSC

 
Fig. 1. The whole framework of the WSSENet 
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3.1 Preliminaries and Overall Framework 

Firstly, Table 1 summarizes the major symbol notations. 
Table 1. Primary notation used throughout the paper 

Notation Meaning 
SSC shape similarity calculator 
DSC shape similarity calculator 
PA pathological area 
IPnm the m-th image patch in the n-th CTI 
STL spatial transformer layer 
STN spatial transformer network 
VT vision transformer 
Si  the i-th white streak  
CTIi the i-th CT image 

 
As depicted in Fig. 1, the WSSENet consists of two major modules: the dataset generator 

and the similarity calculator. For the dataset generator, a STL is employed to generate an 
initial training set for network training. In such a way, the follow-up network training tends 
to be inexact supervision. As the key part of the WSSENet used for network training, a SSC 
and a DSC are introduced, which are trained and tested over the LUNA16 dataset [22]. 

3.2 Dataset Generator 

As stated in Section 1, the purpose of Spatial Transformation Network (STN) [17] is to 
enable the model to be unaffected by changes in object pose or position in computer vision. 
In this subsection, we introduce a new structure called the spatial transformer layer(STL) 
which is the simplified version of the STN by removing the localization network module. As 
the weak supervised characteristic exhibited by the STL, it can generate the CTIs similar to 
the input one in the original dataset for dataset enhancement. The STL can provide for each 
input spatial transformation based on a thin plate spline (TPS) [18].  

Fig. 2 shows the overall architecture of the STL in which UM and VM represent input and 
output CTI matrices (512*512*1), respectively. The Grid Generator and Sampler together 
constitute the STL. θ is a 25*2 tensor, and the tensor elements are randomly generated, 
which are normalized and input to the Grid Generator. The Grid Generator internally 
produces the corresponding values between every pixel point among the input and output 
CTIs. Once entered into the sampler, the corresponding points are inserted into the new 
matrix UM using the thin slice sampling interpolation transformation. Finally, after spatial 
transformation, the output matrix VM is obtained. 

UM VM

norm

θ

 

Grid Generator

Sampler
 

Fig. 2. The overall architecture of the STL 
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3.3 Similarity Calculator 

In this subsection, we focus on the study of the similarity calculator including two 
calculators: 1) the SSC, and 2) the DSC. 

3.3.1 The SSC 

The aim of the SSC is to calculate the shape similarity of the two input lung CTIs without 
considering the interior structure of the lungs. 

Definition 1. Given two CTIs: CTIi and CTIj, their corresponding shape similarity(SimS) 
can be defined in Eq.(1):  

                                            (1) 
where SSM(CTIi,CTIj) is a function for the shape similarity measurement of CTIi and CTIj.  

 

Norm

Multi-Head 
Attention

+

Norm

MLP

+

Embedded Patches  
(a). Overview framework of the VT (b). Transformer encoder 

Fig. 3. The network architecture for the VT 
 
Note that, the function SSM(CTI1,CTI2) in Definition 1 is defined based on a deep learning 

network to be introduced below. The scale sizes of the above two CTIs are 512*512*1. 
First of all, as shown in Fig. 4, the lung CTIs are divided into several image patch(IP)s. 

Based on the continuity between different IPs of the lung CTIs and the diversity of lung 
contour shape, there is a contextual association between different IPs. Formally, given an 
input CTIi, and its corresponding retrieved CTIj, then we have , 

, where  means the m-th IP in the n-th CTI, and k is the 
number of the IPs in the CTI, and m∈[1,k]. The I P i m  is flattened and expanded to form a 
vector  that is synthesized into an IP pair vector  with the vector , 
which is patterned by . 

Definition 2. Given k IP pair vectors(i.e., ), their corresponding contextual 
association relationship(CAR) is derived in Eq.(2,  

                (2) 
where  is the weight coefficient of the i-th vector , and  is a vector of the i-th IP pair. 
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As stated in Definition 2, some IPs are crucial while others are secondary according to the 
contextual relationship of distinct IPs of the lung CTIs. Some vectors' weight coefficients 
may be significantly higher than those of other vectors. Based on the above analysis, it’s 
critically important to introduce a self-attentive mechanism [19] to filter out a small quantity 
of critical information from a vast quantity of information in the calculation of shape 
similarity. In Fig. 3, the Vision Transformer (VT) is applied as a network architecture for the 
SSC based on the self-attentive mechanism [20]. Note that, the transformer encoder in Fig. 
3(a) is illustrated in Fig. 3(b) in detail. In the self-attentive mechanism, the more changeable 
lung lobe shape part was assigned more attention. 

3.3.2 The DSC 

A set of shape similar image set C is obtained after the shape similarity calculation, where 
C={CTI1, CTI2, …, CTIn}. The CTIs in C that included similar information on bronchi, vessels, 
nodules, and some other soft tissues inside the lung lobes of the input CTI had to be 
identified further. Since the parenchymal section of the lung is defined as a pathological area  

PA IP

 
Fig. 4. An example of a PA in a lung CTI 

 
(PA) in CTIi, as illustrated in Fig. 4, the detail similarity computation concentrates only on 
that part of the lung. The following is how the similarity of details is defined. 

Definition 3. Given a lung CTI, its corresponding pathological area(PA) is modeled by a 
vector:  

                                           (3) 
where Si means the i-th white streak in the lung and m is the number of white streaks in PA. 

The white streaks in above definition correspond to the soft tissues inside the lung lobes of 
a lung CTI. A graph model is applied to describe the while streak in a CTI because the white 
streaks possess different shape features. 

Definition 4. Given a white streak Si , it is modeled by a graph: , where 
― V represents a set of vertices in Si , and , where vi  is the i-th 

pixel value;  
― E refers to a collection of edges, and , in which  

means that  and  are connected. 

Based on Definition 4, two pixel points are considered to be adjacent if their correspon- 
ding Euclidean distance does not exceed . Let a vertex vi be a search center, its 
corresponding search processing is performed around it to connect all neighboring ones and 
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generate the edge collection E. As a result, a connected graph S is created, which is the streak 
formation process. Therefore, given two PAs (e.g., PA1 and PA2), their corresponding detail 
similarity of the two lung CTIs can be derived in Definition 5. 

Definition 5. Given two PAs(i.e., PAi and PAj), their corresponding similarity is measured 
as follows: 

 

          

 (4) 

where  refers to the k-th streak in the PAi, Sj t  denotes the t-th streak in the PAj. N(●) 
denotes the number of streaks in ●, and θ refers to the similarity threshold.  
indicates that two streaks are similar.  

As stated in Definition 5, detail similarity is decided by the count of similar streaks in the 
two PAs. Similar streaks are determined by the position and number of all vertices that 
generate streaks in the graph. The DSC structure is given in Fig. 5. Since the fully connected 
layer at the resnet18 [21] has some translation invariance, it can be substituted for a resnet18 
variant using which the DSC is built. 

In this figure, a round rectangle represents a convolution operation with certain 
convolution kernel parameters such as convolution kernel size and number of convolution 
kernels. The number of convolution kernel move steps is denoted by 'NS'. 'BS' stands for the 
image's blank fill size. ‘LBN’ refers to a layer for batch normalization. We adopt linear 
rectification(RL) function as activation function, and ‘MPL’ represents the maximum pooling 
layer. The DSC is broken into five blocks: conv1 and four basicblocks in which the gradient 
disappearance problem in network training can be solved using the residual network. After 
inputting PA1 and PA2 to the DSC via the above five blocks, the ‘Sim Score’, which 
represents the similarity between PA1 and PA2, is finally the output. 
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Fig. 5. The overall architecture of the DSC 
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4.Training 

4.1 Pre-processing Step 

In this subsection, as a part of the lung nodule detection dataset launched in 2016, we adopt 
the LUNA16 public dataset [22] with a total of 1018 cases as a training dataset, which is 
generated from a bigger dataset LIDC-IDRI. 

For a whole lung CTI, there are more than just two lung lobes in it, along with other 
useless information. Here, we define human muscles or other soft tissues as useless 
information in the CTI. In this subsection, we study how to extract the PAs in the lung CTI 
and make the WSSENet focus on learning the characteristics of the PAs. 

The degree of X-ray absorption by organs or tissues in the CTI is quantified as a CT value 
in HU(Hounsfield unit). To extract the PA, the PA mask in CTI is required to be accessed first. 
The PA mask extraction steps are as follows: 
(1) In a CTI, different CT values correspond to different grayscale values. The CTI is 

binarized with the CT value of PA as the demarcation. 
(2) Erase the boundary information of the binarized CTI. 
(3) The soft tissue information within the PA is removed utilizing the closure operation in 

morphology to get a PA mask. 
Fig. 6 illustrates the image effect before and after preprocessing. 

  
(a). Before (b). After 

Fig. 6. Comparison between before and after image pre-processing 

4.2 Training Set and Test Set 

A. The SSC dataset 
First, the STL is used to construct the training set required for training the SSC. The STL 
transforms the input CTI1 (512*512*1) slightly to generate CTI2 (512*512*1), and combines 
CTI1 and CTI2 into a 2*512*512 tensor with the label 1 (similar). After that, we also have to 
find the image pairs that are not similar in shape. A CT scan case is composed of hundreds of 
layers of sections, if the level of the section changes significantly, then the shape of the lung 
in the section will also change obviously. Based on this, CTI3, which has a significant change 
in the number of layers from CTI1, can be found in the same case. CTI1 and CTI3 are a pair of 
dissimilar images, and they are synthesized as a 2*512*512 tensor with a label of 0 
(dissimilar). The CTI pairs with similar and dissimilar shapes identified by the proposed 
method are given in Fig. 7 and Fig. 8, respectively. 
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Fig. 7. Shape similar CTI pairs Fig. 8. Shape dissimilarity CTI pairs 

B. The DSC dataset 
After the SSC is trained, it can be used to create a training set for the DSC. Given CTI1, the 
SSC is utilized to randomly find CTI2, an image in the dataset with a similar lung lobe shape 
to CTI1, synthesize CTI1 and CTI2 into a 2*512*512 tensor, and label it as 0 (not similar). 
Then a slice CTI (i.e., CTI3) adjacent to CTI1 was found in the case of CTI1, synthesized CTI1 
and CTI3 as a 2*512*512 tensor and labeled as 1 (similar). 

The aforementioned method has an error in finding image pairs with dissimilar details: the 
SSC can probably obtain a CTI with similar details to the original CTI and compose an image 
pair of these two, incorrectly labeling them as 0(not similar). In order to lessen the erroneous 
training labels brought by SSC, while allowing DSC to learn more details of similarities 
within the lung lobes, it is required to make the quantity of similar image pairs in the training 
set larger than the quantity of dissimilar image pairs, and we tune the ratio of these two 
quantities to 3:1. 

The similar and dissimilar lung CTI pairs that were found by the aforementioned method 
are illustrated in Fig. 9 and Fig. 10, respectively.  

 

  
Fig. 9. Detail similar CTI pairs Fig. 10. Detail dissimilarity CTI pairs 

4.3 Loss Function 

In the task of lung CTIs similarity calculation, the goal of the WSSENet-based similarity 
measure of lung CTIs is essentially a classification task into one category. In this subsection, 
we design a cross-entropy-based loss function represented in Eq.(5) to assess the difference 
between the predicted and the ground truth. Note that, the sigmoid function (g(x)) is used as 
an activation function for training the similarity calculators (i.e., the SSC and the DSC).. 
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            (5) 

where  
― |B| means the batch size in the network training;  
― S(x) denotes the similarity score of the output in the network, and S(x)∈[0,1]; 
― σ refers to the ground truth, and σ∈{0,1}; 

― .         

5. Experiments 
To verify the retrieval performance of our proposed WSSENet, in this section, we conduct 
comprehensive empirical study in practical scenarios. 

5.1 Experiment Setup 

Our prototype system was implemented using the PyTorch library with an NVIDIA 1080Ti 
GPU. The platform was equipped with an Intel i7-11400F CPU, 16 Gigabyte RAM, and a 4 
Terabyte hard disk. 
Datasets. The dataset comes from the LUNA16 dataset [22] containing 44522. In this 
dataset, there were 179 pulmonary CT cases. The average number of lung CTIs in each case 
was 249. 
Algorithms Evaluated. For comparative evaluation, the WSSENet-based retrieval method is 
compared with four competitors, including two CNN-based hashing methods: the CNNSH 
[16] and the DSH [15]. Two unsupervised methods: the Locality Sensitive Hashing (LSH) 
and the SIFT-BoVWs [3]. 
 

 

 

 

(a). Submission interface (b). Result CTIs 
Fig. 11. The prototype system demo 

5.2 A Prototype System 

Fig. 11 illustrates our prototype system. Fig. 11(a) is the submission interface in which the 
‘Setting’ button changes the value of k in the Top-k retrieval. The right side window contains 
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the output k similar CTIs. A simple Top-k retrieval algorithm is designed in the system. The 
algorithm uses the WSSENet as the similarity evaluation function. After inputting a CTI into 
the system, the system computes the similarity with the all CTIs in the database and finally 
outputs the k CTIs with the highest similarity which is shown in Fig. 11(b). 

5.3 Evaluation of Precision 

In this subsection, we empirically validate the accuracy of the proposed network on 
similarity evaluation by the precision of the Top-k retrieval. 

               (6) 

where TP and FP denote the number of correct and incorrect CTIs as the outputs, 
respectively. 

To begin with, for the Top-k retrieval, Fig. 12 shows retrieval examples for different 
retrieval methods when k is 5 in which every column denotes one retrieval. The input lung 
CTI is illustrated in the 1st row in this figure, and the following 5 rows are the 5 retrieved 
CTIs. In Fig. 12(a), there are only 4 outputs in the 3rd column, indicating that the system 
retrieved only 4 similar CTIs in the database. Figs. 12(b-e) represent the result CTIs of the 
DSH, the CNNSH, the LSH and the SIFT-BoVWs, respectively. A red circle in the retrieved 
result means that the result is similar to the shape of the input image, and a red tick indicates 
that the result is similar to the input image in shape and detail. If only the shape similarity is 
concerned, the accuracy of the WSSENet-based method can reach 95%, while the DSH-based 
method is 92%, the CNNSH-based method is 100%, the LSH-based method is 48%, and the 
SIFT-BoVWs method is only 32%. If both of the shape and detail similarities are considered, 
the accuracy of the WSSENet-based method is 72%, while the DSH-based method is 32%, 
the CNNSH-based method is 36%, the LSH-based method is 8%, the SIFT-BoVWs method 
is only 4%. Therefore, for the retrieval by similar shapes, the proposed WSSENet, the DSH 
and the CNNSH have quite high retrieval precisions, while the retrieval precisions of the 
LSH and the SIFT-BoVWs are much lower than the former three. The WSSENet achieves the 
highest precision compared to other retrieval methods based on the shape and detail 
similarity. 

Next, when k in the Top-k retrieval equals to 10, the retrieval accuracies of the above five 
methods are empirically compared in 50 retrievals. The specific retrieval accuracies and their 
corresponding statistics of the five methods are shown in Fig. 13 and Fig. 14, respectively. In 
Fig. 13(a-b) and Figs. 14(a-b), the WSSENet only considers the retrieval precision of similar 
shape, while the WSSENet+ also considers the similar precision of details at the same time, 
and the rest of the methods are the same. Three metrics (i.e., max, min and avg) of the 
retrieval accuracy are provided. It is observed that if only the shape similarity is considered, 
the retrieval precisions of the deep learning-based retrieval methods (i.e., the WSSENet, the 
DSH, and the CNNSH) are significantly higher than that of the LSH and the SIFT-BoVWs. 
The average and minimum precisions of the WSSENet are slightly higher than the DSH and 
the CNNSH. If both of the shape and detail similarities are considered, the retrieval precision 
of the WSSENet is significantly better than the other four methods in all three metrics. 
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(a). WSSENet-based retrieval results (b). DSH-based retrieval results 

  
(c). CNNSH-based retrieval results (d). LSH-based retrieval results 

 
(e). SIFT-BoVWs-based retrieval results 

Fig. 12. Five examples of the Top-5 retrievals 
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Fig. 13. Effect of accuracy rate 
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(a). the shape (b). the shape & the detail  

Fig. 14. Comparison of the accuracy rates of the 50 retrievals 

5.4 Evaluation of mAP 

To further evaluate the effectiveness of the retrieval system, the mean average precision 
(mAP) is provided that is derived as follows: 

 
              

  (7) 

where n is the number of retrieval samples. The definition of AP is derived below: 

                            (8) 

where idx denotes the index of the CTI among all the CTIs retrieved,  is the 
precision until the output CTI with the index of idx, and N is the total amount of the outputs. 

As in Figs. 15-16, if only shape similarity is considered, the mAP@10 of our method can 
reach 94.91%, while the mAP@10 of the DSH is 91.92%, the mAP@10 of the CNNSH is 
93.78%, the mAP@10 of the LSH is 50.08%, and the mAP@10 of the SIFT-BoVWs is only 
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26.84%. If detail similarity is further considered, the mAP@10 of our method can reach 
66.40%, while the mAP@10 of the DSH is 38.1%, the mAP@10 of the CNNSH is 40.16%, 
the mAP@10 of the LSH is 12.56%, and the mAP@10 of the SIFT-BoVWs is only 2.68%. 
Considering both shape and detail similarity as a very high precision similarity requirement, 
it is likely that results similar to the input CTI details do not exist in the database, and then it 
is not possible for the retrieval system to retrieve these results correctly, resulting in a lower 
AP. Therefore, further considering the detail similarity may lead to the decrease of the mAP. 

Based on the comparison of the five methods on AP and mAP, it can be seen that the mAP 
of the WSSENet-based method is slightly better than the DSH and the CNNSH in shape 
similarity, and significantly better than the LSH and the SIFT-BoVWs. If further considering 
the similarities in detail, the mAP of the WSSENet is significantly better than the remaining 
four methods. 
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Fig. 15. Mean Average Precision 
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Fig. 16. Comparison of the average precision of 50 retrievals 



2374                                                      Zhuang et al.: An Effective WSSENet-Based Similarity  
Retrieval Method of Large Lung CT Image Databases 

 

6.Conclusion and Future Work 
In this paper, we proposed the WSSENet model which is a new weekly supervised deep 
learning network for the effective similarity matching of the lung CTIs. The major advantage 
of our system over the traditional machine learning-based CBMIR systems is its weak 
supervision for the network's training. Furthermore, the WSSENet-based retrieval system 
achieves excellent performance through weakly supervised training. We conducted empirical 
experiments on the LUNA16 dataset to verify that our proposed WSSENet scheme can 
achieve the shape similarity mAP@10 with more than 94% and both shape as well as detail 
similarity mAP@10 with 66.4%, which essentially meets the demands of CBMIR. Compa- 
ring with the existing methods, the WSSENet-based retrieval method has obvious advantages 
in high precision (similar shape and details) and mAP between lung CTIs. 

Since the WSSENet is a general network that can be extended to other medical images 
(ie.g., X-ray, MRI, etc.) for retrieval tasks. Future work may focus on reducing the matching 
time of the WSSENet-based retrieval system to improve efficiency. 
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