• 제목/요약/키워드: image segmentation method

검색결과 1,342건 처리시간 0.025초

Face Recognition Using Histograms of Multi-resolution Segments Based on Discriminant Face Descriptor (판별 얼굴 기술자 기반의 다중 해상도 분할 영역 히스토그램을 이용한 얼굴인식 방법)

  • Lee, Jang-yoon;Lee, Yonggeol;Choi, Sang-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제53권2호
    • /
    • pp.97-105
    • /
    • 2016
  • We propose a face recognition method using the histograms of multi-resolution segments in order to effectively utilize the local information of faces. Since the variations in faces can occur in various sizes, the DFD method, which uses the histograms from the sub-regions of the same size, is not effective for obtaining local information of faces. In this paper, we first divide an image into several sub-regions and extract the DFD(Discriminant Face Descriptor) from each sub-region. By dividing each sub-region into several segments with multi-resolution and extracting histograms for each segment, we reduce the loss of local information in the process of recognition. The experimental results for the Yale B, AR, CAS-PEAL-R1 databases show that the proposed method improves the recognition performance compared to the existing DFD based method.

Case Study: Cost-effective Weed Patch Detection by Multi-Spectral Camera Mounted on Unmanned Aerial Vehicle in the Buckwheat Field

  • Kim, Dong-Wook;Kim, Yoonha;Kim, Kyung-Hwan;Kim, Hak-Jin;Chung, Yong Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제64권2호
    • /
    • pp.159-164
    • /
    • 2019
  • Weed control is a crucial practice not only in organic farming, but also in modern agriculture because it can lead to loss in crop yield. In general, weed is distributed in patches heterogeneously in the field. These patches vary in size, shape, and density. Thus, it would be efficient if chemicals are sprayed on these patches rather than spraying uniformly in the field, which can pollute the environment and be cost prohibitive. In this sense, weed detection could be beneficial for sustainable agriculture. Studies have been conducted to detect weed patches in the field using remote sensing technologies, which can be classified into a method using image segmentation based on morphology and a method with vegetative indices based on the wavelength of light. In this study, the latter methodology has been used to detect the weed patches. As a result, it was found that the vegetative indices were easier to operate as it did not need any sophisticated algorithm for differentiating weeds from crop and soil as compared to the former method. Consequently, we demonstrated that the current method of using vegetative index is accurate enough to detect weed patches, and will be useful for farmers to control weeds with minimal use of chemicals and in a more precise manner.

Diagnosis of the Rice Lodging for the UAV Image using Vision Transformer (Vision Transformer를 이용한 UAV 영상의 벼 도복 영역 진단)

  • Hyunjung Myung;Seojeong Kim;Kangin Choi;Donghoon Kim;Gwanghyeong Lee;Hvung geun Ahn;Sunghwan Jeong;Bvoungiun Kim
    • Smart Media Journal
    • /
    • 제12권9호
    • /
    • pp.28-37
    • /
    • 2023
  • The main factor affecting the decline in rice yield is damage caused by localized heavy rains or typhoons. The method of analyzing the rice lodging area is difficult to obtain objective results based on visual inspection and judgment based on field surveys visiting the affected area. it requires a lot of time and money. In this paper, we propose the method of estimation and diagnosis for rice lodging areas using a Vision Transformer-based Segformer for RGB images, which are captured by unmanned aerial vehicles. The proposed method estimates the lodging, normal, and background area using the Segformer model, and the lodging rate is diagnosed through the rice field inspection criteria in the seed industry Act. The diagnosis result can be used to find the distribution of the rice lodging areas, to show the trend of lodging, and to use the quality management of certified seed in government. The proposed method of rice lodging area estimation shows 98.33% of mean accuracy and 96.79% of mIoU.

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제30권1_2호
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF

Rate-Distortion Based Segmentation of Tumor Region in an Breast Ultrasound Volume Image (유방 초음파 볼륨영상에서의 율왜곡 기반 종양영역 분할)

  • Kwak, Jong-In;Kim, Sang-Hyun;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제42권5호
    • /
    • pp.51-58
    • /
    • 2005
  • This paper proposes an efficient algorithm for extracting a tumor region from an breast ultrasound volume image by using rate-distortion (R-D) based seeded region growing. In the proposed algorithm the rate and the distortion represent the roughness of the contour and the dissimilarity of pixels in a region, respectively. Staring from an initial seed region set in each cutting plane of a volume, a pair of the seed region and one of adjacent regions whose R-D cost is minimal is searched and then they are merged into a new updated seed region. This procedure is recursively performed until the averaged R-D cost values per the number of contour pixels in the seed region becomes maxim. As a result, the final seed region has good pixel homogeneity and a much smooth contour. Finally, the tumor volume is extracted using the contours of the final seed regions in all the cutting planes. Experimental results show that the averaged error rate of the proposed method is shown to be below 4%.

A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching (특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제17권1호
    • /
    • pp.123-128
    • /
    • 2018
  • In this paper, we propose a multi-vehicle object detection algorithm using feature point matching that tracks efficient vehicle objects. The proposed algorithm extracts the feature points of the vehicle using the FAST algorithm for efficient vehicle object tracking. And True if the feature points are included in the image segmented into the 5X5 region. If the feature point is not included, it is processed as False and the corresponding area is blacked to remove unnecessary object information excluding the vehicle object. Then, the post processed area is set as the maximum search window size of the vehicle. And A minimum search window using the outermost feature points of the vehicle is set. By using the set search window, we compensate the disadvantages of the search window size of mean-shift algorithm and track vehicle object. In order to evaluate the performance of the proposed method, SIFT and SURF algorithms are compared and tested. The result is about four times faster than the SIFT algorithm. And it has the advantage of detecting more efficiently than the process of SUFR algorithm.

Development of a Vision Based Fall Detection System For Healthcare (헬스케어를 위한 영상기반 기절동작 인식시스템 개발)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Lee, Chi-Geun;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • 제11권6호
    • /
    • pp.279-287
    • /
    • 2006
  • This paper proposes a method to detect fall action by using stereo images to recognize emergency situation. It uses 3D information to extract the visual information for learning and testing. It uses HMM(Hidden Markov Model) as a recognition algorithm. The proposed system extracts background images from two camera images. It extracts a moving object from input video sequence by using the difference between input image and background image. After that, it finds the bounding rectangle of the moving object and extracts 3D information by using calibration data of the two cameras. We experimented to the recognition rate of fall action with the variation of rectangle width and height and that of 3D location of the rectangle center point. Experimental results show that the variation of 3D location of the center point achieves the higher recognition rate than the variation of width and height.

  • PDF

Fast Digital Hologram Generation Using True 3D Object (실물에 대한 디지털 홀로그램 고속 생성)

  • Kang, Hoon-Jong;Lee, Gang-Sung;Lee, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제34권11B호
    • /
    • pp.1283-1288
    • /
    • 2009
  • In general, a 3D computer graphic model is being used to generate a digital hologram as theinput information because the 3D information of an object can be extracted from a 3D model, easily. The 3D information of a real scene can be extracted by using a depth camera. The 3D information, point cloud, corresponding to real scene is extracted from a taken image pair, a gray texture and a depth map, by a depth camera. The extracted point cloud is used to generate a digital hologram as input information. The digital hologram is generated by using the coherent holographic stereogram, which is a fast digital hologram generation algorithm based on segmentation. The generated digital hologram using the taken image pair by a depth camera is reconstructed by the Fresnel approximation. By this method, the digital hologram corresponding to a real scene or a real object could be generated by using the fast digital hologram generation algorithm. Furthermore, experimental results are satisfactory.

A Low Cost 3D Skin Wrinkle Reconstruction System Based on Stereo Semi-Dense Matching (반 밀집 정합에 기반한 저가형 3차원 주름 데이터 복원)

  • Zhang, Qian;WhangBo, Taeg-Keun
    • Journal of Internet Computing and Services
    • /
    • 제10권4호
    • /
    • pp.25-33
    • /
    • 2009
  • In the paper, we proposed a new system to retrieve 3D wrinkle data based on stereo images. Usually, 3D reconstruction based on stereo images or video is very popular and it is the research focus, which has been applied for culture heritage, building and other scene. The target is object measurement, the scene depth calculation and 3D data obtained. There are several challenges in our research. First, it is hard to take the full information wrinkle images by cameras because of light influence, skin with non-rigid object and camera performance. We design a particular computer vision system to take winkle images with a long length camera lens. Second, it is difficult to get the dense stereo data because of the hard skin texture image segmentation and corner detection. We focus on semi-dense stereo matching algorithm for the wrinkle depth. Compared with the 3D scanner, our system is much cheaper and compared with the physical modeling based method, our system is more flexible with high performance.

  • PDF

Improved FCM Algorithm using Entropy-based Weight and Intercluster (엔트로피 기반의 가중치와 분포크기를 이용한 향상된 FCM 알고리즘)

  • Kwak Hyun-Wook;Oh Jun-Taek;Sohn Young-Ho;Kim Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제43권4호
    • /
    • pp.1-8
    • /
    • 2006
  • This paper proposes an improved FCM(Fuzzy C-means) algorithm using intercluster and entropy-based weight in gray image. The fuzzy clustering methods have been extensively used in the image segmentation since it extracts feature information of the region. Most of fuzzy clustering methods have used the FCM algorithm. But, FCM algorithm is still sensitive to noise, as it does not include spatial information. In addition, it can't correctly classify pixels according to the feature-based distributions of clusters. To solve these problems, we applied a weight and intercluster to the traditional FCM algorithm. A weight is obtained from the entropy information based on the cluster's number of neighboring pixels. And a membership for one pixel is given based on the information considering the feature-based intercluster. Experiments has confirmed that the proposed method was more tolerant to noise and superior to existing methods.