Rate-Distortion Based Segmentation of Tumor Region in an Breast Ultrasound Volume Image

유방 초음파 볼륨영상에서의 율왜곡 기반 종양영역 분할

  • Kwak, Jong-In (Department of Electronic Engineering, Kyungpook National University) ;
  • Kim, Sang-Hyun (Department of Multimedia Engineering, Youngsan University) ;
  • Kim, Nam-Chul (Department of Electronic Engineering, Kyungpook National University)
  • 곽종인 (경북대학교 전자공학과) ;
  • 김상현 (영산대학교 멀티미디어공학부) ;
  • 김남철 (경북대학교 전자공학과)
  • Published : 2005.09.25

Abstract

This paper proposes an efficient algorithm for extracting a tumor region from an breast ultrasound volume image by using rate-distortion (R-D) based seeded region growing. In the proposed algorithm the rate and the distortion represent the roughness of the contour and the dissimilarity of pixels in a region, respectively. Staring from an initial seed region set in each cutting plane of a volume, a pair of the seed region and one of adjacent regions whose R-D cost is minimal is searched and then they are merged into a new updated seed region. This procedure is recursively performed until the averaged R-D cost values per the number of contour pixels in the seed region becomes maxim. As a result, the final seed region has good pixel homogeneity and a much smooth contour. Finally, the tumor volume is extracted using the contours of the final seed regions in all the cutting planes. Experimental results show that the averaged error rate of the proposed method is shown to be below 4%.

본 논문에서는 유방 초음파 볼륨영상에서 진단하고자 하는 종양 영역을 율왜곡 기반(rate-distortion based) 시드영역 확장 법으로 분할하는 알고리듬을 제안한다. 제안된 분할법에서는 율은 윤곽의 거친 정도를 나타내고 왜곡은 영역의 동질성 정도를 나타내는데, 흉부 종양 볼륨으로부터 획득한 2차원 단면 영상에서 설정된 초기 시드영역에서 시작하여 이러한 율과 왜곡을 동시에 최소화하는 주위영역 중 하나씩 시드영역으로 병합한다. 이러한 병합은 시드영역의 윤곽 화소당 평균 율왜곡 비용이 최대가 될 때까지 반복적으로 수행한다. 이렇게 함으로써 최종 시드영역은 동질성이 잘 유지되고 부드러운 윤곽을 갖게 된다. 마지막으로 모든 단면 영상에 있는 최종 시드영역의 윤곽들을 이용하여 3차원 흉부 종양을 추출한다. 실험 결과, 제안한 방법이 초음파 데이터에 대하여 평균 에러율이 약 4% 미만으로 나타났다.

Keywords

References

  1. P. N. T. Wells, 'Current status and future technical advances of ultrasonic imaging,' IEEE Engineering in Medicine and Biology Magazine, pp. 14-20, 2000 https://doi.org/10.1109/51.870227
  2. J. U. Quistgaard, 'Signal acquisition and processing in medical diagnostic ultrasound,' IEEE Signal Processing Magazine, vol. 14, pp. 67-74, 1997 https://doi.org/10.1109/79.560325
  3. S. Ogawa and K. Itoh, 'Three dimensional ultrasonic imaging for diagnosis of breast tumor,' IEEE Ultrasonics Symp., pp. 1677-1680, 1998 https://doi.org/10.1109/ULTSYM.1998.765271
  4. M. Martin and E. Rodriguez, 'Energy functions for the segmentation of ultrasound volume data using active rays,' in Proc. IEEE Int. Conf. on ICASSP'00, vol. 4, pp. 2274-2277, 2000 https://doi.org/10.1109/ICASSP.2000.859293
  5. A. Krivanek and M. Sonka, 'Ovarian ultrasound image analysis: follicle segmentation,' IEEE Trans. Medical Imaging, vol. 17, no. 6, pp. 935-944, Dec. 1998 https://doi.org/10.1109/42.746626
  6. X. Hao, C. Bruce, C. Pislaru, and J. Greenleaf, 'Segmenting high-frequency intracardiac ultrasound images of myocardium into infarcted, ischemic, and normal regions,' IEEE Trans. Med. Imag., vol. 20, pp. 1373-1383, Dec. 2001 https://doi.org/10.1109/42.974932
  7. Z. Lin, J. Jin, and H. Talbot, 'Unseeded region growing for 3D image segmentation,' ACM International Conference Proceeding Series, Selected papers from the Pan-Sydney Workshop on Visualization, vol. 2, pp. 31-37, Dec. 2000
  8. R. Entrekin, P. Jackson, J. R. jago, and B. A. Porter, 'Real time spatial compound imaging in breast ultrasound: technology and early clinical experience,' Medica Mundi, vol. 43, pp. 35-43, 1999
  9. P. N. T. Wells, 'Absorption and dispersion of ultrasound in biological tissue,' Ultrasound in Medicine and Biology, pp. 369-376, 1975 https://doi.org/10.1016/0301-5629(75)90124-6
  10. A. Madabhushi and D. N. Metaxas, 'Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions,' IEEE Trans. on Medical Imaging, vol.22, no.2, pp. 155-169, Feb. 2003 https://doi.org/10.1109/TMI.2002.808364
  11. A. Wahle, G. P. M. Prause, S. C. DeJong, and M. Sonka, 'Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography-methods and validation,' IEEE Trans. on Medical Imaging, vol. 18, pp. 686-699, Aug. 1999 https://doi.org/10.1109/42.796282
  12. D. F. Leotta, J. F. Primozich, K. W. Beach, R. O. Bergelin, K. D. Gibson, and D. E. Strandness, Jr., 'Cross-sectional area changes in peripheral vein grafts monitored by three-dimensional ultrasound imaging,' IEEE Ultrasonics Symp., vol. 2, pp. 1865-1868, Oct. 2000 https://doi.org/10.1109/ULTSYM.2000.921688
  13. R. Steven and L. Horowitz, 'Picture segmentation by a tree traversal algorithm,' Journal of ACM, vol. 23, no. 2, pp. 368-388, Apr. 1976 https://doi.org/10.1145/321941.321956
  14. C. W. Lim, N. C. Kim, S. C. Jun, and C. S. Jung, 'Rate-distortion based image segmentation using recursive merging,' IEEE Trans. Circuits Syst. Video Technology, vol. 10, no. 7, pp. 1121-1134, Oct. 2000
  15. J. I. Kwak, M. N. Jung, S. H. Kim, and N. C. Kim, '3D Segmentation of Breast Tumor in Ultrasound Images,' Medical Imaging 2003 Ultrasonic Imaging and Signal Processing, vol. 4, no. 26, pp. 193-200, Feb. 2003 https://doi.org/10.1117/12.479903
  16. C. S. Choi, H. harashima, and T. Takebe, 'Analysis and synthesis of facial expressions in knowledge-based coding of facial image sequences.' Proc. ICASSP, pp. 2737-2740, 1991 https://doi.org/10.1109/ICASSP.1991.150968
  17. A. Watt, Fundamental of Three-Dimensional Computer Graphics, Addison Wesley, 1990
  18. T. Lango, T. Lie, O. Husby, and J. Hokland, 'Bayesian 2-D deconvolution: Effect of using spatially invariant ultrasound point spread function,' IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 1, Jan. 2001 https://doi.org/10.1109/58.895920
  19. G. Xiao, M. Brady, A. Noble, and Y. Zhang, 'Segmentation of ultrasound B-Mode images with intensity inhomogeneity correction,' IEEE Trans. on Medical Imaging, vol.21, no.1, pp. 48 - 57, Jan. 2002 https://doi.org/10.1109/42.981233