4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer

폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가

  • Um, Ki Cheon (Department of Radiation Oncology, Seoul Asan Medical Center) ;
  • Yoo, Soon Mi (Department of Radiation Oncology, Seoul Asan Medical Center) ;
  • Yoon, In Ha (Department of Radiation Oncology, Seoul Asan Medical Center) ;
  • Back, Geum Mun (Department of Radiation Oncology, Seoul Asan Medical Center)
  • 엄기천 (서울아산병원 방사선종양학과) ;
  • 유순미 (서울아산병원 방사선종양학과) ;
  • 윤인하 (서울아산병원 방사선종양학과) ;
  • 백금문 (서울아산병원 방사선종양학과)
  • Published : 2018.12.29

Abstract

Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

목 적 : 폐암의 호흡동조방사선치료(Respiratory Gated Radiotherapy, RGRT)계획수립 후 표적 주변에 위치하고 있는 정상장기의 경우에는 움직임과 용적변화가 고려되지 않은 상태에서 선량평가가 이루어지는 경우가 많다. 본 연구에서는 적응형방사선치료(Adaptive Radiotherapy, ART)에서 많이 사용되는 변형영상정합(Deformable Image Registration, DIR)을 이용하여 호흡동조방사선치료 시 특정 위상에서의 정상장기의 움직임을 반영한 4차원-선량평가를 진행하였으며, 3차원 선량평가와의 차이를 연구하였다. 또한, 폐암의 치료계획평가 시 환자 호흡에 따른 정상장기의 움직임과 용적변화에 대한 분석 및 고려가 필요한 지 알아보고자 한다. 대상 및 방법 : 호흡동조방사선치료를 받은 폐암 환자 10명을 대상으로 하였다. Eclipse(Ver 13.6 Varian, USA)로 최고 위상 CT영상에 그려진 구조물을 모든 위상영상에 Propagation($Eclipse^{TM}$)이나 Segmentation Wizard($Eclipse^{TM}$)의 메뉴로 동일하게 설정하였으며, Center-to-Center 방식으로 구조물의 움직임 및 용적을 분석하였다. 또한, 4차원 선량평가를 위해 VELOCITY 프로그램(VELOCITY Ver 4.0, Varian, USA)을 이용하여 각 위상의 영상과 선량분포를 최고 위상 CT영상에 변형하였으며, 선량을 합산하여 정상장기의 4차원 선량평가를 실시하고, 3차원 선량평가와 비교분석을 하였다. 또한, 4차원 선량분포의 검증을 위해 $QUASAR^{TM}$ Phantom(Modus Medical Devices)과 $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA)을 사용하여 4차원 감마분석을 시행하였다. 결 과 : 들숨과 날숨 구간의 움직임은 우측 폐가 축 방향 $0.989{\pm}0.34cm$로 가장 컸으며, 척수가 측 방향 -0.001 cm로 가장 작았다. 30~70 % 구간의 움직임은 식도가 축 방향 $0.52{\pm}0.21cm$로 가장 컸으며, 척수가 전후방향 $0.013{\pm}0.01cm$로 가장 작았다. 용적은 우측 폐가 33.5 %로 가장 큰 변화율을 보였다. 3차원 선량평가와 4차원 선량평가에서의 PTV 선량균질지수(Conformity Index, CI) 값과 처방선량지수(Homogeneity Index, HI) 값의 차이는 각각 최대 0.076, 0.021, 최소 0.011, 0.0으로 평가되었다. 정상장기의 경우 4차원 선량평가에서 0.0045~2.76 % 차이를 보였다. 모든 환자의 4차원 감마통과율은 평균 $98.1{\pm}0.42%$로 확인되었고, 모두 기준 95 %를 통과하였다. 결 론 : 모든 환자의 PTV 선량균질지수 값은 4차원 선량평가 시 더 유의한 값임을 확인할 수 있었으며, 처방 선량지수는 두 선량평가에서 차이를 보이지 않았다. 호흡에 의한 움직임이 고려된 4차원 선량분포에서 PTV 경계부분이 채워져 3차원 선량분포에서보다 선량이 더욱 균질한 것을 확인할 수 있었다. 정상장기의 4차원 선량평가에서 0.004~2.76 % 차이가 있었으며, 척수를 제외한 모든 정상장기에서 두 평가방법의 차이유의를 확인할 수 있었다. 정상장기의 3차원 선량평가 시 과소평가가 이루어 질 수 있다는 사실을 본 연구를 통해 알 수 있었으며, 호흡에 의한 정상장기의 선량변화가 예상되는 경우 변형영상정합을 이용한 4차원 선량평가를 고려할 수 있을 것이다. 변형영상정합을 이용한 4차원 선량평가는 환자의 호흡에 의한 정상장기의 움직임과 용적 변화를 반영하는 조금 더 현실적인 선량평가방법이 될 것이라고 사료된다.

Keywords

References

  1. Ross I Berbeco, Seiko Nishioka, Hiroki Shirato, George T Y Chen and Steve B Jiang : Residual motion of lung tumors in gated radiotherapy with external respiratory surrogates. Phys. Med. Biol 50 2005:3655-3667 https://doi.org/10.1088/0031-9155/50/16/001
  2. A. Sam Beddar, et al : Correlation between internal fiducial tumor motion and external marker motion for live tumors im-gated with 4D-CT. International Journal of Radiation Oncology and Biology and Physics 2008(67):630-638
  3. Joep C. Stroom, Ben J.M. Heijmen : Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiotherapy and Oncology 64 2002:75-83 https://doi.org/10.1016/S0167-8140(02)00140-8
  4. Seong-Hee Kang et al : Impact on Four-dimensional Dose Accumulation Using Deformable Image registration in Liver Stereotactic Body Radiotherapy. The Korean Association for Radiation Protection 2014:196-197
  5. Elke Rietzel, Ph.D, George T.Y. Chen, PhD, Noah C. Choi, M.D, Christopher G. Willet. M.D : Fourdimensional image-based treatment planning : target volume segmentation and dose calculation in the presence of respiratory motion. Int. J .Radiation Oncology Biol. Phys. 2005(16):1535-1550
  6. Jing Cai, Ke Sheng, jason P. Sheehan, Stanley H. Benedict, James M. Larner, Paul. Read : Evaluation of thoracic spinal cord motion using dynamic MRI. Radiotherapy and Oncology. 2007:279-282
  7. Nicholas Hardcastle, Wouter van Elmpt, Dirk De Ruysscher, Karl Bzdusek and Wolfgang A tome : Accuracy of deformable image registration for contour propagation in adaptive lung radiotherapy. Hardcastle et al. Radiation Oncology. 2013:8:243 https://doi.org/10.1186/1748-717X-8-243
  8. S.Senan, R. Muirhead, J. R. van Sornsen de Koste : Contour Propagtion on Thoracic 4-dimensional CT Scancs in Locally-advanced Lung Cancer using Deformable Registration. I. J. Radiation Oncology. 2009(75); S466
  9. Sara Thornqvist., Jorgen B. B. Petersen, Morten Hoyer, Lise N. Bentzen & Ludvig Paul Muren : Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration. Acta Oncologica. 2010;49(7):1023-1032 https://doi.org/10.3109/0284186X.2010.503662
  10. Lian Zhang, Zhi Wang, Chengyu Shi, Tengfei Long, X. George Xu : The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radio therapy. Journal of applied clinical medical physics. 2018;185-194
  11. K. M. Langem, Ph.D., D. T. L. Jones, PhD. : Organ motion and its management. Int.J.Radiation Oncology Biol Phys. 2001;50(1):265-278 https://doi.org/10.1016/S0360-3016(01)01453-5
  12. Noriyuki Kadoya et al : Evaluation of various deformable image registration algorithms for thoracic images. Journal of Radiation Research. 2014;55(1):175-182 https://doi.org/10.1093/jrr/rrt093
  13. Seungjong Oh,Phd, Siyoung Kim,Phd : Deformable image registration in radiation therapy. Radiat Oncol J 2017;35(2):101-111 https://doi.org/10.3857/roj.2017.00325
  14. Hill DL, Batchelor PG, Holden M, Hawkes DJ : Medical image registration. Phys Med Biol 2001;46-R1-45
  15. Ke Nie, Jean Pouliot, Eric Smith, and Cynthia Chuang : Performance variations among clinically available deformable image registration tools in adaptive radiotherapy - how should we evaluate and interpret the result?. Journal of applied clinical medical physics. 2016;17(2):328-340
  16. U.J.Yeo, M. L. Taylor, J.R. Supple, L.Dunn, T..Kron, R.D.Franich : Is its ensible to "deform" dose? 3D experimental validation of dose-warping. Medical Physics. 2012;39:5065-5072 https://doi.org/10.1118/1.4736534
  17. Hardcastle, N.; Bender, E.T.: Tome, W.A.: The effect on dose accumulation accuracy of inverse-consistency and transitivity error reduced deformation maps. Australas. Phys. Eng. Sci. Med. 2014;37:321-326 https://doi.org/10.1007/s13246-014-0262-0
  18. Eric E. Klein, Robert E. Drzymala, James A. Purdy, and Jeff Michalski : Errors in radiation oncology : A study in pathways and dosimetric impact. Journal of applied clinical medical physics 2005;6:81-94 https://doi.org/10.1120/jacmp.v6i3.2105