Development of a Vision Based Fall Detection System For Healthcare

헬스케어를 위한 영상기반 기절동작 인식시스템 개발

  • 소인미 (원광대학교 컴퓨터공학과 대학원) ;
  • 강선경 (원광대학교 컴퓨터공학과 대학원) ;
  • 김영운 (원광대학교 컴퓨터공학과 대학원) ;
  • 이지근 (원광대학교 컴퓨터공학과 대학원) ;
  • 정성태 (원광대학교 컴퓨터공학과)
  • Published : 2006.12.31

Abstract

This paper proposes a method to detect fall action by using stereo images to recognize emergency situation. It uses 3D information to extract the visual information for learning and testing. It uses HMM(Hidden Markov Model) as a recognition algorithm. The proposed system extracts background images from two camera images. It extracts a moving object from input video sequence by using the difference between input image and background image. After that, it finds the bounding rectangle of the moving object and extracts 3D information by using calibration data of the two cameras. We experimented to the recognition rate of fall action with the variation of rectangle width and height and that of 3D location of the rectangle center point. Experimental results show that the variation of 3D location of the center point achieves the higher recognition rate than the variation of width and height.

이 논문은 스테레오 영상을 이용하여 응급상황을 인식하기 위하여 기절 동작을 인식하는 방법을 제안한다. 사람의 다양한 동작에서 학습과 인식에 필요한 영상 정보를 추출하기 위하여 3차원 정보를 사용하였고, 인식 알고리즘으로는 HMM을 이용하였다. 두 대의 카메라 영상에서 각각 배경을 생성한 다음에 배경 영상과 입력 영상의 차이를 이용하여 움직임 객체를 추출하였다. 그리고 움직임 객체를 포함하는 사각형을 생성한 다음 두 카메라의 캘리브레이션 정보를 이용하여 3차원 정보를 추출하였다. 3차원 공간상에서의 사각형의 너비와 높이의 변화량과 사각형 중심점 위치의 변화량 각각에 대하여 동작 인식률을 실험하였다. 실험 결과 너비와 높이의 특징 값을 이용하는 것보다 중심점의 3차원 위치 변화량을 이용하는 것이 높은 인식률을 보였다.

Keywords