• 제목/요약/키워드: hydro-dynamic model

검색결과 57건 처리시간 0.028초

Hydro Dynamic Model을 이용한 CMOS의 파괴특성의 Transient Simulation해석 (Transient Simulation of CMOS Breakdown characteristics based on Hydro Dynamic Model)

  • 최원철
    • 한국산업융합학회 논문집
    • /
    • 제5권1호
    • /
    • pp.39-43
    • /
    • 2002
  • In present much CMOS devices used in VLSI circuit and Logic circuit. With increasing a number of device in VLSI, the confidence becomes more serious. This paper describe the mechanism of breakdown on CMOS, especially n-MOS, based on Hydro Dynamic model with device self-heating. Additionally, illustrate the CMOS latch-up characteristics on simplified device structure on this paper.

  • PDF

The uncertainty problem analysis of the engineering solution for prediction and estimation of the operating regime to design of gas- hydro-dynamic systems

  • ;;이지형
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.459-468
    • /
    • 2009
  • Analysis of the uncertainty to have engineering solution of gas-dynamic and hydrodynamic problems is based on the comparison the prospective engineering solution with experimental result. In this paper, the mathematical model to estimate heat flux along gas-dynamic channel wall and the solution sequence are shown. Statistical information and generalizing experimental characteristics about gas- and hydro-dynamic channels were applied to the mathematical model. As the results, it is possible to draw a conclusion that models of the integrated approach, using the averaged statistical data of generalizing characteristics for a turbulent flow, without consideration of the turbulent mechanism (characteristic pulsations), can predict a nominal operating regime for gas-dynamic and hydrodynamic systems. The probable deviation of operating regime for newly designed the gas-dynamic channel can achieve 20% from a regime predicted on a basis 1-D or 3-D modelling irrespective of a kind of used models.

  • PDF

다양한 경사를 가지는 제방모형의 지반 증폭 특성 (Dynamic Response Characteristics of Embankment Model for Various Slope Angles)

  • 김호연;김용;이용희;김학성;김대현
    • 한국지반신소재학회논문집
    • /
    • 제19권2호
    • /
    • pp.35-46
    • /
    • 2020
  • 본 연구는 제방모형의 사면 경사에 따른 가속도 증폭특성을 분석하기 위하여 진동대 실험을 수행하였으며, 경계조건의 영향을 최소화할 수 있는 연성토조를 활용하였다. 제방모형의 수직 대 수평 경사는 각각 1:1, 1:1.5, 1:2로 설정되었으며, 위치에 따른 지반증폭을 계측하기 위하여 12개의 가속도계가 축소모형 내부에 매설되었다. 주파수에 따른 지반의 응답을 파악하기 위하여 축소모형에는 다양한 주파수 특성을 갖는 지진동이 가진되었다. 실험 결과, 사면의 경사가 클수록 지반증폭이 더 커짐을 실험적으로 확인하였다. 또한, 본 연구에서 활용된 실험 시스템의 신뢰성을 검토하기 위하여 1차원 지반응답해석 결과와 수평지반 모형에서의 실험 결과를 비교하였다.

하이드로 포밍 공정의 동특성 해석 및 시뮬레이션 (Dynamic Modeling and Simulation of a Hydro-forming Process)

  • 이우호;조형석
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.122-132
    • /
    • 1999
  • This study describes a dynamic model of the hydroforming process which is used for precision forming of sheet metals. To help the controller design for the control of the forming pressure needed for this process as well as to investigate the effect of system parameters on the dynamic behavior, dynamic modeling is performed with emphasis on hydraulic servo system which actuates the forming machine. Since the model contains several unknown parameters, these were estimated via a least square parameter identification method. Based upon the identified model, a series of simulations were performed for various operating conditions. The results were compared with those of the experiments to verify the validity of the proposed model. The comparison study shows that the proposed dynamic model can describe dynamic behavior of the forming pressure of the hydroforming process to desirable accuracy.

  • PDF

Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation

  • Lais, Stefan;Liang, Quanwei;Henggeler, Urs;Weiss, Thomas;Escaler, Xavier;Egusquiza, Eduard
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.303-314
    • /
    • 2009
  • The present paper shows the results of numerical and experimental modal analyses of Francis runners, which were executed in air and in still water. In its first part this paper is focused on the numerical prediction of the model parameters by means of FEM and the validation of the FEM method. Influences of different geometries on modal parameters and frequency reduction ratio (FRR), which is the ratio of the natural frequencies in water and the corresponding natural frequencies in air, are investigated for two different runners, one prototype and one model runner. The results of the analyses indicate very good agreement between experiment and simulation. Particularly the frequency reduction ratios derived from simulation are found to agree very well with the values derived from experiment. In order to identify sensitivity of the structural properties several parameters such as material properties, different model scale and different hub geometries are numerically investigated. In its second part, a harmonic response analysis is shown for a Francis runner by applying the time dependent pressure distribution resulting from an unsteady CFD simulation to the mechanical structure. Thus, the data gained by modern CFD simulation are being fully utilized for the structural design based on life time analysis. With this new approach a more precise prediction of turbine loading and its effect on turbine life cycle is possible allowing better turbine designs to be developed.

부유식 풍력발전 해석 프로그램 WindHydro 특성 연구 (A Study on the Characteristics of WindHydro - a Floating Wind Turbine Simulation Code)

  • 송진섭;임채환;이성균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, 'WindHydro', is newly developed. In order to investigate the characteristics of the program, a series of loading cases are simulated such as (1) wind only case, (2) free decay cases with initial displacement, (3) wave only case (4) wind and wave case. The simulations are carried out for the 5-MW OC3-Hywind model which has a spar buoy and catenary mooring lines. As a result, the reliability of WindHydro is verified in most viewpoints although additional study is still necessary to clear out some uncertainty of the program.

  • PDF

Designing a Hydro-Structural Ship Model to Experimentally Measure its Vertical Bending and Torsional Vibrations

  • Houtani, Hidetaka;Komoriyama, Yusuke;Matsui, Sadaoki;Oka, Masayoshi;Sawada, Hiroshi;Tanaka, Yoshiteru;Tanizawa, Katsuji
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.174-184
    • /
    • 2018
  • We herein propose a new design procedure of a flexible container ship model where the vertical bending and torsional vibration modes are similar to its prototype. To achieve similarity in torsional vibration mode shapes, the height of the shear center of the model must be located below the bottom hull, similar to an actual container ship with large opening decks. Therefore, we designed a ship model by imparting appropriate stiffness to the hull, using urethane foam without a backbone. We built a container ship model according to this design strategy and validated its dynamic elastic properties using a decay test. We measured wave-induced structural vibrations and present the results of tank experiments in regular and freak waves.

Design of a ship model for hydro-elastic experiments in waves

  • Maron, Adolfo;Kapsenberg, Geert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1130-1147
    • /
    • 2014
  • Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing) and on impulsive wave loads (whipping). This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

2-모드 기계유압식 무단변속기의 성능 및 전달효율해석 (Performance and Transmission Efficiency Analysis of 2-Mode Hydro Mechanical Transmission)

  • 정규홍;김형의;김종기
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.90-98
    • /
    • 2005
  • HMT is a type of continuously variable transmission which has split power flow path characteristics with gear train and hydro static unit. The benefit of improved fuel economy and high power capacity enables it to be a promising application fur large vehicles. This paper presents the analysis results including velocity, static torque, transmission efficiency and dynamic model of the HMT that is developed for city buses. The speeds or gear shafts, the static clutch torque and split power ratio for each mode are detailed here. From the analysis of HMT transmission efficiency considering the power loss in meshed gear and hydraulic unit, we can conclude that minimization of hydraulic power is necessary for improved fuel economy design. Also, the dynamic simulation result for mode shift characteristics shows that little shift shock is observed because of the synchronized rotation speed in clutch.