• Title/Summary/Keyword: homogeneous spaces

Search Result 78, Processing Time 0.019 seconds

MODULI SPACES OF ORIENTED TYPE ${\mathcal{A}}$ MANIFOLDS OF DIMENSION AT LEAST 3

  • Gilkey, Peter;Park, JeongHyeong
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1759-1786
    • /
    • 2017
  • We examine the moduli space of oriented locally homogeneous manifolds of Type ${\mathcal{A}}$ which have non-degenerate symmetric Ricci tensor both in the setting of manifolds with torsion and also in the torsion free setting where the dimension is at least 3. These exhibit phenomena that is very different than in the case of surfaces. In dimension 3, we determine all the possible symmetry groups in the torsion free setting.

COMMUTATORS OF SINGULAR INTEGRAL OPERATOR ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

  • Wang, Hongbin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.713-732
    • /
    • 2017
  • Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type Hardy spaces with variable exponent.

Modelling of magneto-thermoelastic plane waves at the interface of two prestressed solid half-spaces without energy dissipation

  • Kakar, Rajneesh;Kakar, Shikha
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1299-1323
    • /
    • 2015
  • A model for reflection and refraction of magneto-thermoelastic SV-waves at the interface of two transversely isotropic and homogeneous solid half spaces under initial stress by applying classical dynamical theory of thermoelasticity is purposed. The reflection and refraction coefficients of SV-waves are obtained with ideal boundary conditions for SV-wave incident on the solid-solid interface. The effects of magnetic field, temperature and initial stress on the amplitude ratios after numerical computations are shown graphically with MATLAB software for the particular model.

SOBOLEV TYPE APPROXIMATION ORDER BY SCATTERED SHIFTS OF A RADIAL BASIS FUNCTION

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.435-443
    • /
    • 2007
  • An important approach towards solving the scattered data problem is by using radial basis functions. However, for a large class of smooth basis functions such as Gaussians, the existing theories guarantee the interpolant to approximate well only for a very small class of very smooth approximate which is the so-called 'native' space. The approximands f need to be extremely smooth. Hence, the purpose of this paper is to study approximation by a scattered shifts of a radial basis functions. We provide error estimates on larger spaces, especially on the homogeneous Sobolev spaces.

ISOPARAMETRIC FUNCTIONS IN S4n+3

  • Jee, Seo-In;Lee, Jae-Hyouk
    • The Pure and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.257-270
    • /
    • 2014
  • In this article, we consider a homogeneous function of degree four in quaternionic vector spaces and $S^{4n+3}$ which is invariant under $S^3$ and U(n + 1)-action. We show it is an isoparametric function providing isoparametric hypersurfaces in $S^{4n+3}$ with g = 4 distinct principal curvatures and isoparametric hypersurfaces in quaternionic projective spaces with g = 5. This extends study of Nomizu on isoparametric function on complex vector spaces and complex projective spaces.

A Heuristic for the Container Loading Problem (3차원 컨테이너 적재 문제를 위한 발견적 해법)

  • Jang, Chang-Sik;Kang, Maeng-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.156-165
    • /
    • 2005
  • A new heuristic algorithm for the heterogeneous single container loading problem is proposed in this paper, This algorithm fills empty spaces with the homogeneous load-blocks of identically oriented boxes and splits residual space into three sub spaces starting with an empty container. An initial loading pattern is built by applying this approach recursively until all boxes are exhausted or no empty spaces are left. In order to generate alternative loading patterns, the load-blocks of pattern determining spaces are replaced with the alternatives that were generated on determining the load-blocks. An improvement algorithm compares these alternatives with the initial pattern to find improved one. Numerical experiments with 715 test cases show the good performance of this new algorithm, above all for problems with strongly heterogeneous boxes.

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF INVARIANT (α1, α2)-METRICS ON SPHERES

  • Huihui, An;Zaili, Yan;Shaoxiang, Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.33-46
    • /
    • 2023
  • Geodesic orbit spaces are homogeneous Finsler spaces whose geodesics are all orbits of one-parameter subgroups of isometries. Such Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov volume comparison theorem. In this paper, we obtain a complete description of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it is Sp(n + 1)Sp(1)-invariant. As an interesting consequence, we find infinitely many Finsler spheres with vanishing S-curvature which are not geodesic orbit spaces.

METRIC FOLIATIONS ON HYPERBOLIC SPACES

  • Lee, Kyung-Bai;Yi, Seung-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.63-82
    • /
    • 2011
  • On the hyperbolic space $D^n$, codimension-one totally geodesic foliations of class $C^k$ are classified. Except for the unique parabolic homogeneous foliation, the set of all such foliations is in one-one correspondence (up to isometry) with the set of all functions z : [0, $\pi$] $\rightarrow$ $S^{n-1}$ of class $C^{k-1}$ with z(0) = $e_1$ = z($\pi$) satisfying |z'(r)| ${\leq}1$ for all r, modulo an isometric action by O(n-1) ${\times}\mathbb{R}{\times}\mathbb{Z}_2$. Since 1-dimensional metric foliations on $D^n$ are always either homogeneous or flat (that is, their orthogonal distributions are integrable), this classifies all 1-dimensional metric foliations as well. Equations of leaves for a non-trivial family of metric foliations on $D^2$ (called "fifth-line") are found.

POLYNOMIAL FACTORIZATION THROUGH Lγ(μ) SPACES

  • Cilia, Raffaella;Gutierrez, Joaquin M.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1293-1307
    • /
    • 2009
  • We give conditions so that a polynomial be factorable through an $L_{\gamma}({\mu})$ space. Among them, we prove that, given a Banach space X and an index m, every absolutely summing operator on X is 1-factorable if and only if every 1-dominated m-homogeneous polynomial on X is right 1-factorable, if and only if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As a consequence, if X has local unconditional structure, then every 1-dominated homogeneous polynomial on X is right and left 1-factorable.