DOI QR코드

DOI QR Code

Modelling of magneto-thermoelastic plane waves at the interface of two prestressed solid half-spaces without energy dissipation

  • Received : 2014.11.09
  • Accepted : 2014.12.22
  • Published : 2015.06.25

Abstract

A model for reflection and refraction of magneto-thermoelastic SV-waves at the interface of two transversely isotropic and homogeneous solid half spaces under initial stress by applying classical dynamical theory of thermoelasticity is purposed. The reflection and refraction coefficients of SV-waves are obtained with ideal boundary conditions for SV-wave incident on the solid-solid interface. The effects of magnetic field, temperature and initial stress on the amplitude ratios after numerical computations are shown graphically with MATLAB software for the particular model.

Keywords

References

  1. Biot, M.A. (1965), Mechanics of Incremental Deformations, John Wiley and Sons, Inc., New York.
  2. Biot, M. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
  3. Boley, B.A. (1964), Theory of thermal stresses, John Wiley.
  4. Chakraborty, N. and Singh, M.C. (2011), "Reflection and refraction of a plane thermoelastic wave at a solid-solid interface under perfect boundary condition, in presence of normal initial stress", Appl. Math. Model., 35(11), 5286-5301. https://doi.org/10.1016/j.apm.2011.04.026
  5. Chakraborty, N. (2013), "Reflection of plane elastic waves at a free surface under initial stress and temperature field", TEPE, 2(2), 47-54.
  6. Chattopadhyay, A. and Kumar, R. (2006), "Reflection and refraction of waves at the interface of an isotropic medium over a highly anisotropic medium", Acta Geophys., 54(3), 239-249.
  7. Chattopadhyay, A., Venkateswarlu, R.L.K. and Chattopadhyay, A. (2007), "Reflection and refraction of quasi P and SV waves at the interface of fibre-reinforced media", Adv. Stud. Theor. Phys., 1(2), 57-73.
  8. Duhamel, J.M.C. (1937), "Second memorie sur les phenomenes thermomecaniques", J. 1' Ecole Polytech. Paris, 15(25), 1-57.
  9. Deswal, S., Singh, L. and Singh, B. (2011), "Reflection and refraction at an interface between two dissimilar thermally conducting viscous liquid half-spaces", Int. J. Pure Appl. Math., 70(6), 807-824.
  10. Fox, N. (1969), "Generalised thermoelaticity", Int. J. Eng. Sci., 7(4), 437. https://doi.org/10.1016/0020-7225(69)90077-9
  11. Gurtin, M.E. and Pipkin, A.C. (1969), "A general theory of heat conduction with finite wave speeds", Arch. Rat. Mech. Anal., 31(2), 113-126. https://doi.org/10.1007/BF00281373
  12. Kumar, R. and Kumar, R. (2012), "Reflection and refraction of elastic waves at the interface of an elastic half-space and initially stressed thermoelastic with voids half-space", Multidiscip. Model. Mater. Struct., 8(3), 355-379. https://doi.org/10.1108/15736101211269159
  13. Landau, L.D. and Lifshitz, E.M. (1960), Elastrodynamics of Continuous Media (English Translation), Pergamon Press, London, New York.
  14. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  15. Lotfy, K. (2011), "Transient disturbance in a half-space under generalized magnetothermoelasticity with a stable internal heat source under three theories", Multidiscip. Model. Mater. Struct., 7(1), 73-90. https://doi.org/10.1108/15736101111141458
  16. Meixner, J. (1970), "On the linear theory of heat conduction", Archives Rat. Mech. Anal., 39(2), 108-119. https://doi.org/10.1007/BF00281042
  17. Montanaro, A. (1999), "On singular surface in isotropic linear thermoelasticity with initial stress", J. Acoust. Soc. Am., 106(3), 1586-1588. https://doi.org/10.1121/1.427154
  18. Neumann, F. (1885), Vorlesungen uber die Theorie der Elastizitat der festoon Korpern, Leipzig.
  19. Nowacki, W. (1958), Thermoelasticity, Addison-Wesley Pub. Com. Inc., London.
  20. Nowinski, J.L. (1978), Theory of thermoelasticity with application, Sijthoff and Noord-hoof International, The Netherlands.
  21. Shekhar, S. and Parvez, I.A. (2013), "Effect of rotation, magnetic field and initial stresses on propagation of plane waves in transversely isotropic dissipative half space", Appl. Math., 4(08), 107-113.
  22. Singh, S.S. (2009), "Reflection and transmission of SV-wave at a plane interface between homogeneous and inhomogeneous elastic half-spaces", Sci. Vision, 9(2), 73-78. https://doi.org/10.1167/9.14.73