DOI QR코드

DOI QR Code

METRIC FOLIATIONS ON HYPERBOLIC SPACES

  • Lee, Kyung-Bai (DEPARTMENT OF MATHEMATICS UNIVERSITY OF OKLAHOMA) ;
  • Yi, Seung-Hun (SCIENCES AND LIBERAL ARTS-MATHEMATICS DIVISION YOUNGDONG UNIVERSITY)
  • Received : 2009.04.06
  • Accepted : 2010.06.29
  • Published : 2011.01.01

Abstract

On the hyperbolic space $D^n$, codimension-one totally geodesic foliations of class $C^k$ are classified. Except for the unique parabolic homogeneous foliation, the set of all such foliations is in one-one correspondence (up to isometry) with the set of all functions z : [0, $\pi$] $\rightarrow$ $S^{n-1}$ of class $C^{k-1}$ with z(0) = $e_1$ = z($\pi$) satisfying |z'(r)| ${\leq}1$ for all r, modulo an isometric action by O(n-1) ${\times}\mathbb{R}{\times}\mathbb{Z}_2$. Since 1-dimensional metric foliations on $D^n$ are always either homogeneous or flat (that is, their orthogonal distributions are integrable), this classifies all 1-dimensional metric foliations as well. Equations of leaves for a non-trivial family of metric foliations on $D^2$ (called "fifth-line") are found.

Keywords

References

  1. A. Basmajian and G. Walschap, Metric flows in space forms of nonpositive curvature, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3177–3181.
  2. G. Cairns and R. H. Escobales, Jr., Note on a theorem of Gromoll-Grove, Bull. Austral. Math. Soc. 55 (1997), no. 1, 1–5.
  3. V. A. Efremovic and E. M. Gorelik, Metric fibrations of Lobachevsky-Bolyai space, Differential geometry and its applications (Eger, 1989), 223–230, Colloq. Math. Soc. Janos Bolyai, 56, North-Holland, Amsterdam, 1992.
  4. D. Gromoll and K. Grove, One-dimensional metric foliations in constant curvature spaces, Differential geometry and complex analysis, 165–168, Springer, Berlin, 1985.
  5. D. Gromoll and K. Tapp, Nonnegatively curved metrics on $S^2\;{\times}\;{\mathbb{R}}^2$, Geom. Dedicata 99 (2003), 127-136. https://doi.org/10.1023/A:1024967423590
  6. D. Gromoll and G. Walschap, The metric fibrations of Euclidean space, J. Differential Geom. 57 (2001), no. 2, 233–238.
  7. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. II, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996.
  8. I. Moerdijk and J. Mrcun, Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, 91. Cambridge University Press, Cambridge, 2003.
  9. B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
  10. P. Tondeur, Foliations on Riemannian Manifolds, Springer, New York, 1998.
  11. G. Walschap, Geometric vector fields on Lie groups, Differential Geom. Appl. 7 (1997), no. 3, 219–230.
  12. S. Wolfram, Mathematica, Wolfram Research, 1993.
  13. A. Zeghib, Lipschitz regularity in some geometric problems, Geom. Dedicata 107 (2004), 57–83.

Cited by

  1. The Efficacy of Photodynamic Therapy With Verteporfin for Polypoidal Choroidal Vasculopathy: Retrospective Multi-Center Case Study vol.50, pp.3, 2009, https://doi.org/10.3341/jkos.2009.50.3.365
  2. Characteristics of Polypoidal Choroidal Vasculopathy Associated with Subretinal Hemorrhage vol.56, pp.7, 2015, https://doi.org/10.3341/jkos.2015.56.7.1051
  3. Short-term Efficacy of Intravitreal Bavacizumab for Polypoidal Choroidal Vasculopathy vol.50, pp.1, 2009, https://doi.org/10.3341/jkos.2009.50.1.51
  4. Clinical Characteristics of Polypoidal Choroidal Vasculopathy Associated with Chronic Central Serous Chorioretionopathy vol.26, pp.1, 2012, https://doi.org/10.3341/kjo.2012.26.1.15
  5. Metric foliations of homogeneous three-spheres pp.1572-9168, 2019, https://doi.org/10.1007/s10711-019-00426-4