• Title/Summary/Keyword: high surface area

Search Result 3,453, Processing Time 0.034 seconds

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

Preparation of MgO with High Surface Area, and Modification of Its Pore Characteristics

  • Lee, Moon-Hee;Park, Dong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1437-1443
    • /
    • 2003
  • Thermal decomposition of hydrated surface layer of $Mg(OH)_2$ at $500^{\circ}C$ in vacuum turned non-porous MgO into porous one with high surface area of around $270 m^2$/g. Most of its surface area, 74 %, was from micropores, and rest of it was from mesopores in wedge-shaped slits, exhibiting bimodal size distribution centered around 30 and 90${\AA}$. Rehydration followed by subsequent dehydration at $300 ^{\circ}C$ in dynamic vacuum further raised the surface area to 340 $m^2$/g. Fraction of microporous surface area was increased to 93%, and the shape of the mesopores was modified into parallel slits with a specific dimension of 32 ${\AA}$. Application of $Fe_2O_3$ over MgO via iron complex formation did not alter the pore characteristics of MgO core, except slightly increased pore dimension. Over the course of the modification, $Fe_2O_3$ stayed on the surface possibly via spill-over reaction.

Measurement of Kager's Triangle Area and Retrocalcaneal Surface Temperature by shoes heel height (신발 굽 높이에 따른 Kager씨 삼각의 면적과 후종족부의 표면온도 측정)

  • Jeon, Byeongkyou;Yeo, Jindong;Shin, Jungsub
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.521-529
    • /
    • 2012
  • The aim of this study was to analyze radiological change of Kager's triangle area and retrocalcaneal surface temperature by shoes heel height. Area of Kager's triangle was measured by simple radiography study And PACS of INFINITI. Retrocalcaneal surface temperature were measured by DITI. Area of Kager's triangle and retrocalcaneal surface temperature were calculated for comparison and analysis, with flat shoes and high heel shoes. Area of Kager's triangle($0.88cm^2$) and retrocalcaneal surface temperature ($1.4^{\circ}C$)tends to decrease with high heel shoes. The highest and shortest of the Kager's triangle area and a surface temperature difference between flat shoes and high heel shoes, each $0.9cm^2$, $1.2cm^2$, $1.6^{\circ}C$, $0.5^{\circ}C$ and showed slight differences. The highest weight and the lowest weight of a surface area and the temperature difference between flat shoes and high heels, each $1.8cm^2$, $0.8cm^2$, $1.1^{\circ}C$, $0.2^{\circ}C$ and higher weight Kager's area and the surface temperature is decreased. The longest time and shortest time of a surface area and the temperature difference between high heels, each $0.8cm^2$, $1.4^{\circ}C$. In conclusion, Areas of Kager's triangle and retrocalcaneal surface temperature decrease with high heel shoes. If we wear high heel shoes for a long time, retrocalcaneal pain and blood flow disorder will occurs.

Surface Functionalization of Carbon Fiber for High-Performance Fibrous Supercapacitor (고성능 섬유형 슈퍼커패시터를 위한 탄소섬유의 표면 기능화)

  • Lee, Young-Geun;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2022
  • Fibrous supercapacitors (FSs), owing to their high power density, good safety characteristic, and high flexibility, have recently been in the spotlight as energy storage devices for wearable electronics. However, despite these advantages, FCs face many challenges related to their active material of carbon fiber (CF). CF has low surface area and poor wettability between electrode and electrolyte, which result in low capacitance and poor long-term stability at high current densities. To overcome these limits, fibrous supercapacitors made using surface-activated CF (FS-SACF) are here suggested; these materials have improved specific surface area and better wettability, obtained by introducing porous structure and oxygen-containing functional groups on the CF surface, respectively, through surface engineering. The FS-SACF shows an improved ion diffusion coefficient and better electrochemical performance, including high specific capacity of 223.6 mF cm-2 at current density of 10 ㎂ cm-2, high-rate performance of 171.2 mF cm-2 at current density of 50.0 ㎂ cm-2, and remarkable, ultrafast cycling stability (96.2 % after 1,000 cycles at current density of 250.0 ㎂ cm-2). The excellent electrochemical performance is definitely due to the effects of surface functionalization on CF, leading to improved specific surface area and superior ion diffusion capability.

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

Study on Sensitivities and Fire Area Errors in WRF-Fire Simulation to Different Resolution Data Set of Fuel and Terrain, and Surface Wind (WRF-Fire 산불 연료 · 지형자료 해상도와 지상바람의 연소면적 모의민감도 및 오차 분석연구)

  • Seong, Ji-Hye;Han, Sang-Ok;Jeong, Jong-Hyeok;Kim, Ki-Hoon
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.485-500
    • /
    • 2013
  • This study conducted WRF-Fire simulations in order to investigate sensitivities of the resolution of fire fuel and terrain data sets, and the surface wind to simulated fire area. The sensitivity simulations were consisted of 8 different WRF-Fire runs, each of which used different combination of data sets of fire fuel and terrain with different resolution. From the results it was turned out that the surface wind was most sensitive. The next was fire fuel and then fire terrain. Unfortunately, every run produced too much fire area. In other words no simulations succeeded in simulating such proper fire area so as for the WRF-Fire to be used realistically. It was verified that the errors of fire area from each runs were contributed by 41%, 53%, and 6% from surface wind, fire fuel, and fire terrain, respectively. Finally this study suggested that the selection of Anderson fuel category in the area of interest seemed to be very critical in the performance of WRF-Fire simulations.

Fabrication of Large-Area Photovoltaic Crystal with Modified Surface Using Trimethoxysilyl Propyl Methacrylate (TMSPM) for Solar Cell Protection

  • Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.84-87
    • /
    • 2014
  • Protection of solar cell surface is important to prevent from dust, pollen, sand, etc. Therefore, development of large area antifouling film is urgent for high performance of solar cells. The surface of silica spheres was modified to fabricate large area antifouling film. The surface of monodisperse silica spheres has been modified with 3-(trimethoxysilyl) propylmethacrylate (TMSPM) to fabricate large area photonic crystal. Although the surface modification of silica spheres with TMSPM has been failed for the base catalyst, the second trial using acid catalyst showed the following results. The FTIR absorption peak at $1721cm^{-1}$ representing C=O stretching vibration indicates that the TMSPM was attached on the surface of silica spheres. The methanol solution comprised of the surface modified silica spheres (average diameter of 380 nm) and a photoinitiator was poured in the patterned silicon wafer with the dimension of 10 cm x 10 cm and irradiated UV-light during the self-assembly process. The result showed large area crack and defect free nanostructures.

Producing Uniform High Illumination Large Area Backlight Systems with Long Life

  • Guzowski, Lawrence T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.779-782
    • /
    • 2004
  • Establishing and maintaining optimum lamp operating temperature is critically important in backlight systems for large area displays. The information presented in this paper is based upon work completed for a tiled 37.5" AM LCD, plus projections for a 37.5", 42" & 50" monolithic display. Due to the size of the units, a requirement for highly collimated light and a requirement for high brightness, >550 nits at the display surface, significant wattage is required which generates high heat levels in the backlight display assembly and potentially, at the display rear surface. Uniformity of illumination becomes an important element in the system design because of the large area involved.

  • PDF

Characteristics of Surface High Ozone Concentration on Pusan Coastal area, Korea (부산 해안지역의 고농도 오존 발생 특성에 관한 연구)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.295-302
    • /
    • 2000
  • This study was conducted to investigate the characteristics of surface ozone concentration and occurrence of high ozone concentration using hourly ozone, nitrogen dioxide and meteorological data for 1997~1998 in Pusan coastal area. Monthly mean ozone concentration was the highest at Dongsamdong in Spring(35.4ppb), at Kwangbokdong in Fall(25.1ppb) and the lowest Dongsamdong(22.2ppb) and Kwangbokdong(16.0ppb) in Winter. Relative standard deviation indicating clearness of observation site was 0.42 at Dongsamdong and 0.49 at Kwangbokdong that is similar to urban area. The diurnal variation of ozone concentration of Dongsamdong and Kwangbokdong showed maximum at 1500~1600LST and minimum 0700~0800LST that typical pattern of ozone concentration. In ozone episode period(Sept. 10~15, 1998), diurnal change of ozone concentration was very high, and ozone concentration was related to meteorological parameters such as temperature, relative humidity, wind speed, cloud amount and radiation on a horizontal surface. During the episode days peak ozone concentrations are much higher than the normal values, wind speeds are always lower, and solar radiation is high with the exception of the September episode.

  • PDF