DOI QR코드

DOI QR Code

Preparation of MgO with High Surface Area, and Modification of Its Pore Characteristics

  • Lee, Moon-Hee (Department of Chemistry, Sookmyung Women's University) ;
  • Park, Dong-Gon (Department of Chemistry, Sookmyung Women's University)
  • Published : 2003.10.20

Abstract

Thermal decomposition of hydrated surface layer of $Mg(OH)_2$ at $500^{\circ}C$ in vacuum turned non-porous MgO into porous one with high surface area of around $270 m^2$/g. Most of its surface area, 74 %, was from micropores, and rest of it was from mesopores in wedge-shaped slits, exhibiting bimodal size distribution centered around 30 and 90${\AA}$. Rehydration followed by subsequent dehydration at $300 ^{\circ}C$ in dynamic vacuum further raised the surface area to 340 $m^2$/g. Fraction of microporous surface area was increased to 93%, and the shape of the mesopores was modified into parallel slits with a specific dimension of 32 ${\AA}$. Application of $Fe_2O_3$ over MgO via iron complex formation did not alter the pore characteristics of MgO core, except slightly increased pore dimension. Over the course of the modification, $Fe_2O_3$ stayed on the surface possibly via spill-over reaction.

Keywords

References

  1. Gillan, M. J.; Kantorovich, L. N.; Lindan, P. J. D. Current Opinionin Solid State & Materials Science 1996, 1, 820. https://doi.org/10.1016/S1359-0286(96)80108-2
  2. Causa, M.; Dovesi, R.; Pisani, C.; Roetti, C. Surface Science1986, 175, 551. https://doi.org/10.1016/0039-6028(86)90012-9
  3. Scamehorn, C. A.; Hess, A. C.; McCarthy, M. I. J. Chem. Phys.1993, 99, 2786. https://doi.org/10.1063/1.465187
  4. Scamehorn, C. A.; Harrison, N. M.; McCarthy, M. I. J. Chem.Phys. 1994, 101, 1547. https://doi.org/10.1063/1.467777
  5. Pugh, S.; Gillan, M. J. Surface Science 1994, 320, 331. https://doi.org/10.1016/0039-6028(94)90321-2
  6. Langel, W. L.; Parrinello, M. J. Chem. Phys. 1995, 103, 3240. https://doi.org/10.1063/1.470256
  7. Kantorovich, L. N.; Holender, J. M.; Gillan, M. J. Surface Science1995, 343, 221. https://doi.org/10.1016/0039-6028(95)00844-6
  8. Nada, R.; Hess, A. C.; Pisani, C. Surface Science 1995, 336, 353. https://doi.org/10.1016/0039-6028(95)00499-8
  9. Refson, K.; Wogelius, R. A.; Frager, D. G.; Payne, M. C.; Lee, M.H.; Milman, V. Phys. Review B 1995, 52(15), 52.
  10. Lin, S.-T.; Klabunde, K. J. Langmuir 1985, 1, 600. https://doi.org/10.1021/la00065a015
  11. Li, Y.-X.; Klabunde, K. J. Langmuir 1991, 7, 1388. https://doi.org/10.1021/la00055a017
  12. Li, Y.-X.; Koper, O.; Atteya, M.; Klabunde, K. J. Chem. Mater.1992, 4, 323. https://doi.org/10.1021/cm00020a019
  13. Klabunde, K. J.; Khaleel, A.; Park, D. High Temp. Mater. Sci.1995, 33, 99.
  14. Stark, J. V.; Park, D. G.; Lagadic, I.; Klabunde, K. J. Chem. Mater.1996, 8, 1904. https://doi.org/10.1021/cm950583p
  15. Klabunde, K. J.; Stark, J.; Koper, O.; Mohs, C.; Park, D. G.;Decker, S.; Jiang, Y.; Lagadic, I.; Zhang, D. J. Phys. Chem. 1996,100, 12142. https://doi.org/10.1021/jp960224x
  16. Kim, H. J.; Kang, J.; Park, D. G.; Kweon, H.-J.; Klabunde, K. J.Bull. Korean Chem. Soc. 1997, 18, 831. https://doi.org/10.1007/BF02705604
  17. Green, J. J. Mater. Sci. 1983, 18, 637. https://doi.org/10.1007/BF00745561
  18. Moodie, A. F.; Warble, C. E. J. Crystal Growth 1986, 74, 89. https://doi.org/10.1016/0022-0248(86)90251-4
  19. Beruto, D.; Botter, R. J. Am. Ceram. Soc. 1987, 70(3), 155. https://doi.org/10.1111/j.1151-2916.1987.tb04950.x
  20. Kim, M. G.; Dahmen, U.; Searcy, A. W. J. Am. Ceram. Soc. 1987,70(3), 146. https://doi.org/10.1111/j.1151-2916.1987.tb04949.x
  21. Carrott, M. R.; Carrott, P.; Brotas de Carvalho, M. Characterizationof Porous Solids II; Rodriguez-Reinoso, F. et al., Eds;Elsevier: Amsterdam, 1991; p 635.
  22. Carrott, M. R.; Carrott, P.; Brotas de Carvalho, M.; Sing, K. S. W.J. Chem. Soc. Faraday Trans. 1991, 87(1), 185. https://doi.org/10.1039/ft9918700185
  23. Goodman, J. F. Proc. R. Soc. London Ser. A 1958, 247, 346. https://doi.org/10.1098/rspa.1958.0188
  24. Kim, H.-J.; Kang J.; Song, M. Y.; Park, S. H.; Park, D. G.; Kweon,H.-J.; Nam, S. S. Bull. Korean Chem. Soc. 1999, 20(7), 786.
  25. Lowell, S.; Shield, J. E. Powder Surface Area and Porosity, 3rdEd.; Chapman & Hall: London, UK, 1991; p 11.
  26. Johnson, M. F. L. J. Crystal. 1978, 52, 425.
  27. Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area andPorosity, 2nd Ed.; Academic press: London, UK, 1982; p 111.
  28. Carrott, M. R.; Carrott, P.; Brotas de Carvalho, M.; Sing, K. S. W.J. Chem. Soc. Faraday Trans. 1993, 89(3), 579. https://doi.org/10.1039/ft9938900579
  29. Anderson, P. J.; Horlock, R. F.; Oliver, J. F. Trans. Faraday Soc.1962, 58, 1993. https://doi.org/10.1039/tf9625801993
  30. Coluccia, S.; Marchese, L.; Lavagnino, S.; Anpo, M. SpectrochimicaActa 1987, 43A(12), 1573.
  31. Brinker, C. J.; Scherer, G. W. Sol-Gel Science The Physics andChemistry of Sol-Gel Processing; Academic press: San Diego,US, 1990; p 360.

Cited by

  1. One-Step Route to Synthesize Multiwalled Carbon Nanotubes Filled with MgO Nanorods vol.2010, pp.1687-4129, 2010, https://doi.org/10.1155/2010/671863
  2. Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications vol.1, pp.9, 2011, https://doi.org/10.1039/c1cy00259g
  3. Direct oxidation of cyclohexane to adipic acid using nano-gold catalysts vol.2, pp.3-4, 2012, https://doi.org/10.1007/s13203-012-0018-2
  4. O Nanostructures vol.2012, pp.2090-8741, 2012, https://doi.org/10.5402/2012/865373
  5. -MgO nanocomposite powders by the modified sol-gel method vol.14, pp.2, 2016, https://doi.org/10.1111/ijac.12624
  6. Adsorption Potential vol.55, pp.29, 2016, https://doi.org/10.1021/acs.iecr.6b00647
  7. Polyethylene Nanocomposites for the Next Generation of Ultralow-Transmission-Loss HVDC Cables: Insulation Containing Moisture-Resistant MgO Nanoparticles vol.8, pp.23, 2016, https://doi.org/10.1021/acsami.6b04188
  8. Simple but efficient synthesis of bis(indolyl)methanes by the condensation reaction of substituted benzaldehydes with indole over mesoporous ZrO2–MgO green catalysts under solvent free conditions vol.24, pp.4, 2017, https://doi.org/10.1007/s10934-016-0340-7
  9. Synthesis of Quinazoline-2,4(1H,3H)-Diones from Carbon dioxide and 2-Aminobenzonitriles Using MgO/ZrO2 as a Solid Base Catalyst vol.133, pp.1-2, 2009, https://doi.org/10.1007/s10562-009-0126-5
  10. Infra-Red Study of Surface Carbonation on Polycrystalline Magnesium Hydroxide vol.30, pp.11, 2009, https://doi.org/10.5012/bkcs.2009.30.11.2567
  11. Metal-Organic Framework-Derived MgO/Mg(OH)2@Nanoporous Carbon for High Thermal Energy Release vol.3, pp.3, 2003, https://doi.org/10.1021/acsanm.9b02291