• Title/Summary/Keyword: high platform base

Search Result 64, Processing Time 0.022 seconds

Dynamic responses on traditional Chinese timber multi-story building with high platform base under earthquake excitations

  • Zhang, Xicheng;Ma, Hui;Zhao, Yanli;Zhao, Hongtie
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.331-345
    • /
    • 2020
  • The multi-story timber structure with high platform base is one of the important architectural types in the traditional Chinese buildings. To study the dynamic characteristics and seismic responses on this kind of traditional structure, the 3-D finite element models of Xi'an drum tower which included the high platform base, upper timber structure and whole structure was established considering the structural form and material performance parameters of the structure in this study. By the modal analysis, the main frequencies and mode shapes of this kind of traditional building were obtained and investigated. The three kinds of earthquake excitations included El-Centro wave, Taft wave and Lanzhou wave were separately imposed on the upper timber structure model and the overall structure model, and the seismic responses on the tops of columns were analyzed. The results of time history analysis show that the seismic response of the upper timber structure is obviously amplified by high platform base. After considering the effect of high platform base, the mean value on the lateral displacement increments of the top column in the overall structure is more than 20.478% and the increase of dynamic coefficients was all above 0.818 under the above three different earthquake excitations. Obviously, it shows that the existence of high platform base has a negative influence on the seismic responses of upper timber structure. And the high platform base will directly affect the safety of the upper timber structure. Therefore, the influence of high platform base on the dynamic response of its upper timber structure cannot be neglected.

Application of Smart Isolation Platform for Microvibration Control of High-Tech Industry Facilities (첨단기술산업 시설물의 미진동제어를 위한 스마트 면진플랫폼의 적용)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In this study, a smart isolation platform has been developed for control of microvibration of high-technology facilities, such as semi-conductor plants and TFT-LCD plants. Previously, microvibration control performance of a smart base isolation system has been investigated. This study compared microvibration control performance of a smart isolation platform with that of conventional base isolation and fixed base. For this purpose, train-induced ground acceleration is used for time history analysis. An MR damper was used to compose a smart isolation platform. A fuzzy logic controller was used as a control algorithm and it was optimized by a multi-objective genetic algorithm. Numerical analysis shows that a smart isolation platform can effectively control microvibration of a high-technology facility subjected to train-induced excitation compared with other models.

Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control (개선된 슬라이딩 모드제어기를 이용한 스튜워트플렛폼의 추종제어)

  • 김낙인;이종원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.166-175
    • /
    • 2001
  • The high speed tracking control of a 6-6 Stewart platform manipulator (SPM) normally requires knowledge of its complex full dynamics and measurement of its base motion when the SPM operates on a motion nit. In this study, an enhanced sliding mode control scheme has been developed, which is based on the reduced dynamics, not necessitating measurement of the base motion. The enhanced sliding mode control implemented with the perturbation compensation and modified reaching phase alleviation functions has been successfully employed for high speed tacking control of the laboratory SPM, when it is subjected to a virtual base motion.

  • PDF

Development of a 6 degrees-of-freedom micro stage for ultra precision positioning (초정밀작업을 위한 6자유도 마이크로 스테이지의 개발)

  • Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.

Energy efficiency strategy for a general real-time wireless sensor platform

  • Chen, ZhiCong
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.617-641
    • /
    • 2014
  • The energy constraint is still a common issue for the practical application of wireless sensors, since they are usually powered by batteries which limit their lifetime. In this paper, a practical compound energy efficiency strategy is proposed and realized in the implementation of a real time wireless sensor platform. The platform is intended for wireless structural monitoring applications and consists of three parts, wireless sensing unit, base station and data acquisition and configuration software running in a computer within the Matlab environment. The high energy efficiency of the wireless sensor platform is achieved by a proposed adaptive radio transmission power control algorithm, and some straightforward methods, including adopting low power ICs and high efficient power management circuits, low duty cycle radio polling and switching off radio between two adjacent data packets' transmission. The adaptive transmission power control algorithm is based on the statistical average of the path loss estimations using a moving average filter. The algorithm is implemented in the wireless node and relies on the received signal strength feedback piggybacked in the ACK packet from the base station node to estimate the path loss. Therefore, it does not need any control packet overheads. Several experiments are carried out to investigate the link quality of radio channels, validate and evaluate the proposed adaptive transmission power control algorithm, including static and dynamic experiments.

LTE-Based Macro Base Station Platform Architecture (LTE 기반 Macro 기지국 Platform 구조 연구)

  • Jeong, Chan-Bok;Bae, Hyeon-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.861-869
    • /
    • 2014
  • This paper shows the research of a platform architecture relates to the LTE-based macro basestation; the proposed platform architecture is designed with the interface between the baseband signal and IF (Intermediate Frequency) per codeword. Using this method, we can smoothly transmit/receive a large amounts of data regardless of the number of antenna in a macro base station which is used technology such as massive MIMO. In this paper, We analyzed the evolution of LTE technology and the trend in the development of the LTE-based system. For validation of the proposed architecture, we compare the general architecture of a conventional with the proposed architecture. From the calculation results of transmission quantity data, we see that the proposed architecture can give better performance than the existing architecture. By presenting this architecture, we hope to provide a new foundation for Design and Implementation of a LTE base station platform which is used technology such as massive MIMO, carrier aggregation (CA), coordinated multi point (CoMP).

Realtime Mobile Base Station Placement with EM Algorithm for HAP based Network (HAP 기반 네트워크에서의 EM 알고리즘을 사용한 실시간 이동 기지국 배치)

  • Jung, Woong-Hee;Song, Ha-Yoon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.181-189
    • /
    • 2010
  • HAP(High Altitude Platform) is a stationary aerial platform positioned in the stratosphere between 17Km and 22Km height and it could act as an MBS (Mobile Base Station). HAP based Network has advantages of both satellite system and terrestrial communication system. In this paper we study the deploy of multiple HAP MBS that can provides efficient communication for users. For this study, EM(Expectation Maximization) clustering algorithm is used to cluster terrestrial mobile nodes. The object of this paper is improving EM algorithm into the clustering algorithm for efficiency in variety aspects considering distance between mobile terminal units and speed of mobile terminal units, and estimating performance of HAP MBS deploy technique with use of improved EM algorithm using RWP (Random Waypoint) node mobility.

Shopping on Fashion Vertical Platforms: The Mediating Effect of Platform Satisfaction and The Moderating Effect of Consumer Innovativeness (패션 버티컬 플랫폼 쇼핑: 플랫폼 만족의 매개효과와 소비자 혁신성의 조절효과)

  • Yu Ju Sung;Kyu Hye Lee
    • Journal of Fashion Business
    • /
    • v.27 no.4
    • /
    • pp.38-49
    • /
    • 2023
  • Fashion vertical platforms offer various content and events to consumers and have established a strong customer base. Especially, they cater to the sensibilities of young customers. This study analyzed the characteristics of a sensuous fashion vertical platform, which enhances expertise and provides customized services. In addition, this study aimed to find out whether consumer innovation modulates the relationship between fashion vertical platform, platform satisfaction, and continuous shopping intention. An online survey was conducted targeting consumers in their 20s and 30s who had experience using fashion vertical platforms, and 222 samples were analyzed. Factor analysis and structural equation model were analyzed using the SPSS 29.0 and Smart-PLS. Smart-PLS analysis results showed that exclusivity, convenience and informativeness did not directly affect continuous shopping intention but showed a complete mediating effect through platform satisfaction. Both the high and low innovative groups demonstrated significant effects of exclusivity on platform satisfaction, and platform satisfaction showed significant effects on continuous shopping intention. A high level of innovation among the consumers showed significant mediating effects on exclusivity, personalization, and continuous shopping intention, as reflected by information on platform satisfaction, and low level of innovation among the consumers showed significant effect on convenience. This study's findings highlight the importance of enhancing exclusivity, convenience, informativeness, and esthetics in fashion vertical platforms, and improving platform satisfaction. These findings will be used to develop marketing strategies that can lead to continuous shopping intentions and provide opportunities for the industry.

The Design of Sliding Mode Controller with Sliding Perturbation Observer for a Robust Control of Stewart Platform Manipulator (스튜어트 플랫폼의 견실제어를 위한 슬라이딩 섭동 관측기를 갖는 슬라이딩 모드 제어기 개발)

  • You, Ki-Sung;Park, Min-Kyu;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.639-648
    • /
    • 2002
  • The stewart platform manipulator is a manipulator that has the closed-loop structure with an upper plate end-effector and a base frame. The stewart platform manipulator has the merit of high working accuracy and high stiffness compared with a serial manipulator. However, this is a complex structure, so controllability of the system is not so good. In this paper, we introduce a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The major contribution of this work introduces the development and design of robust observer for the state and the perturbation, which is integrated into a variable structure controller(VSC) structure. The combination of controller/observer improves the control performance, because of the robust routine called sliding mode control with sliding perturbation observer(SMCSPO). Simulation and experiment are performed to apply to the manipulator. And their results show a high accuracy and a good performance.

The Unified UE Baseband Modem Hardware Platform Architecture for 3GPP Specifications

  • Kwon, Hyun-Il;Kim, Kyung-Ho;Lee, Chung-Yong
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 2011
  • This paper presents the unified user equipment (UE) baseband modulation and demodulation (modem) hardware platform architecture to support multiple radio access technologies. In particular, this platform selectively supports two systems; one is HEDGE system, which is the combination of third generation partnership project (3GPP) Release 7 high speed packet access evolution (HSPA+) and global system for mobile communication (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE), while the other is LEDGE system, which is the combination of 3GPP Release 8 long term evolution (LTE) and GSM/GPRS/EDGE. This is done by applying the flexible pin multiplexing scheme to a hardwired pin mapping process. On the other hand, to provide stable connection, high portability, and high debugging ability, the stacking structure is employed. Here, a layered board architecture grouped by functional classifications is applied instead of the conventional one flatten board. Based on this proposed configuration, we provide a framework for the verification step in wireless cellular communications. Also, modem function/scenario test and inter-operability test with various base station equipments are verified by system requirements and scenarios.