Journal of the Korean Association for Spatial Structures Vol. 14, No. 2 (통권 56호), pp.87~94, June, 2014

첨단기술산업 시설물의 미진동제어를 위한 스마트 면진플랫폼의 적용

Application of Smart Isolation Platform for Microvibration Control of High-Tech Industry Facilities

> 김 현 수* Kim, Hyun-Su Ka

강 주 원** Kang, Joo-Won 김 영 식*** Kim, Young-Sik

Abstract

In this study, a smart isolation platform has been developed for control of microvibration of high-technology facilities, such as semi-conductor plants and TFT-LCD plants. Previously, microvibration control performance of a smart base isolation system has been investigated. This study compared microvibration control performance of a smart isolation platform with that of conventional base isolation and fixed base. For this purpose, train-induced ground acceleration is used for time history analysis. An MR damper was used to compose a smart isolation platform. A fuzzy logic controller was used as a control algorithm and it was optimized by a multi-objective genetic algorithm. Numerical analysis shows that a smart isolation platform can effectively control microvibration of a high-technology facility subjected to train-induced excitation compared with other models.

Keywords : Microvibration control, Smart isolation platform, High-technology facility, MR damper, Fuzzy controller

1. 서 론

근래에 들어서 반도체 산업이 초고도화 및 초정 밀화가 진전되고 TFT-LCD의 크기가 커져가면서 이 드의 생산공정에 대한 마이크로미터 수준의 미진동 제어가 요구되고 있다. 고집적 생산 제품을 가공 및 검사하기 위해서는 가공 선폭 이상의 분해성능을 가진 고정밀도의 생산 및 검사장비가 필요하고 이 러한 하이테크 제품을 생산하는 정밀산업 공장구조 물들에는 진동에 민감한 정밀생산장비 및 정밀측정 /검사장비가 설치된 청정실(Clean Room)이 존재하 게 된다. 이렇게 청정실에 설치된 고정밀도의 생산

* 정회원, 선문대학교 건축학부 부교수
Division of Architecture, Sunmoon University

** 정회원, 영남대학교 건축학부 교수 School of Architecture, Yeungnam Universtiy

*** 교신저자, 정회원, 대구과학대학교 건축인테리어과 부교수 Dept. of Architecture & Interior Design, Taegu Science University Tel: 053-320-1182 Fax: 053-320-1777 E-mail : yosikim@tsu.ac.kr 및 검사장비는 내외부로부터 입력되는 진동에 민감 한 영향을 받게 되므로 적절한 미진동 제어를 위한 기술이 필요하게 된다.

지금까지 수행된 첨단기술산업 시설물의 미진동 제어에 대한 연구는 내부 및 외부 진동원에 의하여 유발되는 진동의 전파경로를 차단하는 기술개발에 초점이 맞추어져 있고 어느 정도 성공적인 성과를 얻을 수 있었다¹⁾. 또한 건축 및 토목구조물의 지진 응답을 제어하기 위하여 가장 널리 사용되고 있는 제어장치 중의 하나인 면진시스템으로 첨단기술산 업 시설물의 미진동을 제어하고자 하는 노력이 있 었고 비교적 우수한 결과를 나타내었다²⁾. 더 나아가 액추에이터와 같은 능동제어장치를 이용한 하이브 리드 기초 면진시스템 및 하이브리드 바닥판 면진 시스템에 대한 연구가 수행되었고 능동제어장치보 다 우수한 미진동 제어성능을 나타내었다³⁾. 그러나 능동제어장치는 안정성과 견실성 등에 관한 우려와 더불어 지진하중과 같은 큰 동적하중이 가해졌을 때 공급되지 못 할 수도 있는 큰 전력의 필요성 때

문에 실제로 널리 사용되지 못하고 있다⁴. 이러한 능동 면진시스템의 단점을 해결하고 수동 면진시스 템보다 우수한 면진성능을 발휘할 수 있도록 하기 위하여 기존의 면진장치에 스마트 감쇠기를 조합한 스마트 면진시스템이 제안되었다^{4,5)}.

이전의 연구를 보면 스마트 면진시스템이 지진하 중에 의한 구조물의 응답제어에 우수한 성능을 발 휘할 뿐만 아니라 미진동 제어에도 효과적으로 적 용할 수 있음을 알 수 있다⁶. 그러나 지진응답제어 와 미진동제어를 동시에 목적으로 하지 않고 미진 동제어만을 목적으로 한다면 기초면진시스템을 사 용하지 않고 클린룸이 설치되어 있는 층의 바닥이 나 플랫폼을 구조물과 분리시키는 것이 더욱 효과적 이고 경제적일 것이다. 따라서 본 연구에서는 열차 진동하중을 받는 첨단시설물의 미진동제어를 위하 여 MR 감쇠기를 이용하여 구성된 스마트 플랫폼 면진시스템을 구성하였고 그 제어성능을 검토하였 다. 스마트 플랫폼 면진시스템의 미진동제어성능을 객관적으로 분석하기 위하여 열차하중이 가해지는 고정기초구조물과 일반적인 LRB 면진시스템을 적 용한 구조물 및 수동 플랫폼 면진시스템의 동적응답 을 비교하였다. 스마트 플랫폼 면진시스템을 구성하 는 MR 감쇠기를 제어하기 위해서 비선형성이 높은 제어장치에 효과적이라고 알려져 있는 퍼지제어알 고리즘(Fuzzy Logic Controller; FLC)⁷⁾을 사용하였 다. 또한 효과적인 제어성능을 발휘하는 퍼지제어알 고리즘을 개발하기 위하여 다목적 유전자알고리즘⁸⁾ 을 사용하여 최적화 하였다.

2. 예제구조물 및 스마트 면진플랫폼

2.1 3층 예제구조물의 특성

본 연구에서는 <Fig. 1>에 나타낸 바와 같이 3층 에제구조물을 사용하여 4개의 해석모델을 구성하였 다. 예제구조물은 각 층별 집중질량(m_i)과 기둥강성 (k_i)으로 표현되는 전단빌딩모델을 사용하여 모형화 하였다. 첫 번째 예제구조물은 고정기초구조물이고 두 번째 예제구조물은 수동 면진시스템을 적용한 구조물이다. 세 번째 예제구조물은 수동 면진플랫폼 을 1층에 설치한 구조물이고 네 번째 예제구조물은 MR 감쇠기로 구성된 스마트 면진플랫폼을 1층에 설치한 구조물이다. 본 예제구조물에서 클린룸은 1 층에 존재한다. 그림에서 보는 바와 같이 예제구조 물은 층별 하나의 자유도로 모형화되어 고정기초 구조물은 3개의 자유도를 가지는 운동방정식으로 표현된다. 예제구조물은 대략 22m×22m 크기의 평 면을 가지고 있다고 가정하고 구조물의 1, 2, 3층의 질량은 각각 m1=350,250kg, m2=262,,690kg, m3= 175,130kg으로 두었다. 강성은 k1=4,728,400kN/m, k₂=312,230kN/m, k₃=157,610kN/m이고, 감쇠값은 c1=4369kNs/m, c2=291.3kNs/m, c3=145.6kNs/m를 갖도록 하였다. 이러한 특성치를 가지는 3층 고정기 초 예제구조물에 대하여 고유치해석을 수행한 결과 1, 2, 3차 모드의 고유진동수는 3.447, 7.372, 19.155 Hz로 계산되었다. 또한 예제구조물의 1, 2, 3차 모 드의 감쇠비는 각각 1%, 2.14%, 5.56%이다.

(Fig. 1) Example structure models

수동 면진시스템이 설치된 예제구조물에서 추가 된 면진층의 질량은 m₄=250,000kg으로 하였다. 면 진층의 강성(k₄)은 면진된 구조물의 1차모드 고유진 동 주기가 1.5초가 되도록 조정하였고 면진층의 감 쇠비는 2%로 두어 감쇠상수 c₄를 얻었다.

2.2 면진플랫폼의 특성

앞 절의 <Fig. 1(c)> 및 <Fig. 1(d)> 에 나타낸 면 진 플랫폼이 설치된 3층 구조물의 질량 및 강성, 감 쇠 등 구조적 특성치는 <Fig. 1(a)> 에 나타낸 고정 기초구조물의 값과 동일하게 두었다. 본 연구에서 는 그림에 나타낸 바와 같이 건물 1층에 면진플랫 폼을 두어서 구조물과 강성 및 감쇠시스템으로 연 결하였다. 사용된 면진플랫폼의 질량 (m_p) 은 87,560 kg으로 이 값은 예제구조물 1층 바닥 질량의 25% 에 해당하는 값이다. 면진플랫폼의 고유진동수는 $f_p = \sqrt{k_p/m_p}/2\pi$ 와 같이 계산되며 면진플랫폼의 감쇠비는 $\xi_p = c_p/(4\pi m_p f_p)$ 로 계산된다. 면진플랫 폼의 미진동 제어성능은 면진플랫폼의 진동수 및 감쇠비에 의해서 결정되므로 이 값들을 변화시켜서 매개변수연구를 수행하였다.

면진플랫폼의 질량(m_p)은 이미 결정되어 있으므 로 앞의 계산식에서 면진플랫폼의 강성(k_p)과 감쇠 상수(c_p)를 변화시켰다. 이때 감쇠비는 일반적으로 사용되는 1%-4%의 감쇠비를 사용하였고 수행한 매

개변수연구의 결과를 <Fig.2 - Fig.7>에 나타내었다. 면진플랫폼의 진동수 및 감쇠비 변화에 따른 면 진플랫폼의 최대변위 및 1층 바닥의 최대변위를 <Fig. 2>와 <Fig. 3>에 나타내었다. 두 응답 모두 면 진플랫폼의 진동수가 증가할수록 전반적으로 커지 는 경향을 나타내었다. 면진플랫폼의 변위를 살펴보 면 진동수가 2Hz이하에서는 감쇠비에 관계없이 거 의 일정한 값을 나타내는 것을 알 수 있다. 그러나 2Hz이상에서는 진동수가 증가할수록 면진플랫폼의 변위가 증가하고 감쇠비가 증가할수록 면진플랫폼 의 변위가 감소하는 경향이 뚜렷하게 나타난다. 이 에 반하여 1층 최대변위의 경우에는 진동수 전 구 간에 걸쳐서 감쇠비가 증가함에 따라서 응답이 감 소하는 경향을 분명하게 확인할 수 있다. 면진플랫 폼의 진동수가 3Hz이상에서는 진동수가 증가함에 따라서 1층 변위응답이 증가하지만 3Hz이하의 구 간에서 감쇠비가 3% 및 4%인 경우에는 진동수가 증가함에 따라 오히려 1층 변위응답이 감소하는 구 간도 존재하는 것을 확인할 수 있다.

면진플랫폼이 설치되는 1층 바닥의 최대 및 RMS 가속도 응답을 <Fig. 4>와 <Fig. 5>에 나타내었다. 그림에서 볼 수 있듯이 면진플랫폼의 진동수가 증 가할수록 전반적으로 1층 바닥의 속도응답이 감소 하는 것을 볼 수 있다. 그러나 최대 속도응답의 경 우에는 4Hz가 지나면서 진동수의 증가에 따라서 오 히려 응답이 증가하는 것을 볼 수 있다. 면진플랫폼 의 감쇠비는 증가할수록 1층 바닥의 속도응답이 줄 어드는 경향을 보여준다. 마지막으로 미진동제어의 가장 중요한 목표가 되는 면진플랫폼의 최대 및 RMS 속도응답을 <Fig. 6>과 <Fig. 7>에 나타내었 다. 전반적인 경향은 면진플랫폼의 최대치 변위의 변화를 나타낸 <Fig. 2>와 비슷한 것을 볼 수 있다. 면진플랫폼의 최대 및 RMS 속도응답 모두 플랫폼 의 진동수가 증가함에 따라서 2Hz까지는 완만한 증 가추세를 보이다가 그 이후에는 보다 급격하게 증 가하였다. 면진플랫폼의 감쇠비가 플랫폼 진동수 2Hz이하의 구간에서는 속도응답에 별다른 영향을 미치지 못하지만 2Hz보다 큰 구간에서는 작은 감쇠 비일수록 더 큰 구조물 응답을 나타내었다.

파라미터연구 결과를 보면 면진플랫폼의 진동수

가 변화함에 따라서 면진플랫폼의 속도응답과 1층 바닥의 속도응답 저감효과가 서로 상충되는 것을 알 수 있다. 따라서 본 연구에서는 1층 바닥 및 면 진플랫폼의 미진동을 적절하게 제어할 수 있는 값 으로 면진플랫폼의 진동수(*f_p*)는 3Hz, 감쇠비(ξ_p)는 3%를 선택하여 수동 면진플랫폼을 구성하였다.

2.3 스마트 면진플랫폼의 구성

본 논문에서는 전술한 바와 같이 MR 감쇠기로 구성된 스마트 면진플랫폼을 이용하여 미진동제어 성능을 검토해보았다. MR 감쇠기는 기계적으로 단 순하면서도 빠른 반응속도를 가지고 외부온도가 변 하거나 불순물이 첨가되어도 항복응력의 변화가 거 의 없이 일정한 성능을 유지하는 장점 때문에 최근 에 많은 연구가 진행되고 있고 건축 및 토목구조물 제어에 다양한 형태로 활용되고 있다⁹. 이러한 MR 감쇠기의 동적 거동을 모사하기 위한 수치해석 모 델로서는 많은 연구자들에 의해서 널리 사용되고 있는 Bouc-Wen 모델¹⁰⁾을 사용하였다. 이 모델은 전 단형태의 MR 감쇠기의 거동을 잘 모사하며 실제규 모의 MR 감쇠기 모델링에도 효과적으로 적용될 수 있다고 알려져 있다. 본 연구에서 사용한 MR 감쇠 기는 최대용량이 50 N을 가지도록 설계된 모델로서 입력전압이 0V일 때 passive-off 상태를, 5V일 때 passive-on 상태를 나타낸 다. 본 연구에서 사용한 MR 감쇠기의 입력전압에 따른 이력거동 변화 그래 프를 <Fig. 8>에 나타내었다.

선행연구⁶⁾에서 스마트 면진시스템을 구성하기 위 해서 25 kN 용량의 MR 감쇠기를 사용했던 것과 비 교하면 0.2%의 용량으로 스마트 면진플랫폼을 구성 하였다. 스마트 면진 플랫폼을 구성할 때 사용된 강 성값은 수동 면진 플랫폼을 구성할 때와 같이 면진 플랫폼의 진동수(f_p)를 3Hz가 되도록 두었다. <Fig. 1(d)>에서와 같이 스마트 면진 플랫폼을 구성할 때 에는 추가적인 감쇠장치를 사용하지 않고 오직 MR 감쇠기의 감쇠성능만을 사용하여 스마트 면진플랫 폼의 제어범위를 가능한 크게 하였다.

2.4 열차진동하중

본 논문에서는 첨단기술산업 시설물에 미진동을 유발할 수 있는 교통하중 중에서 열차하중을 사용 하여 스마트 면진 플랫폼의 미진동제어성능을 검토 하였다. 이를 위하여 열차유발 지반운동 생성에 널 리 사용되고 있는 수정된 Kanai-Tajimi 파워스펙트 럼 필터를 이용하여 인공의 열차유발 지반운동 데 이터를 생성한다. 본 연구에서는 선행연구⁶⁾에서 사 용한 인공열차하중을 이용하였으며 하중의 지반운 동 가속도 및 속도를 <Fig. 9>와 <Fig. 10>에 나타 내었다.

(Fig. 10) Train-induced ground velocity

3. 스미트 제어알고리즘의 개발

스마트 면진플랫폼을 제어하기 위해서 사용한 퍼 지제어알고리즘을 개발하기 위해 입출력 변수에 대 한 소속함수를 결정해야 하고 이들 간의 관계를 퍼 지제어규칙으로 연결시켜주어야 한다. 본 연구에서 는 이를 위하여 여러 개의 목적을 동시에 최적화할 수 있는 다목적 유전자알고리즘을 사용하여 미진동 제어를 위한 퍼지제어알고리즘을 최적화 하였다.

본 연구에서는 스마트 면진플랫폼의 미진동 제어 를 위해서 면진플랫폼의 속도응답과 변위응답(drift) 을 제어의 목적으로 선택하였다. 가속도응답 대신 속도응답을 제어목적으로 선택한 이유는 미진동을 평가할 때에는 가속도응답보다 속도응답이 더 중요 시되기 때문이다. 일반적으로 면진플랫폼과 면진플 랫폼이 설치되는 층의 슬래브 사이에 감쇠를 추가 하게 되면 면진플랫폼의 drift는 감소하게 된다. 그 러나 면진플랫폼과 슬래브 사이의 격리효과는 저하 되어서 슬래브의 진동이 면진플랫폼에 전달되어 속 도응답은 증가할 수 있게 된다. 따라서 이 문제는 하나의 목적을 만족시키는 것이 아니라 여러 개의 성능지표에 대하여 동시에 좋은 성능을 발휘할 수 있는 최적해를 찾는 다목적 최적화로 생각할 수 있 다. 다목적 최적화의 기본적인 문제점은 목적들이 서로 상충한다는 것이다. 이러한 경우에는 각각의 목적들 사이에 상치관계(trade-off)가 존재하게 되는 데 여기서 어떤 한 목적에 대한 성능 향상은 다른 목적에 대한 손실 없이는 이루어질 수 없다. 즉, 스 마트 면진 픞랫폼을 제어하는 문제에 있어서는 상 치관계가 면진플랫폼의 drift와 면진플랫폼 속도응 답 사이에서 존재하게 된다.

본 연구에서 제어목적으로 선택한 스마트 면진플 랫폼의 속도응답과 변위응답(drift)을 앞서 설계한 최적의 수동 면진플랫폼의 응답으로 나누어 정규화 된 비율로 다음 <Table 1>과 같이 목적함수를 선정 하였다. 표에서 볼 수 있듯이 면진플랫폼의 drift는 시스템의 안정성에 영향을 미치므로 최대값으로 선 택하였고 면진플랫폼 속도응답은 미진동에 대한 사 용성을 나타내므로 RMS응답을 선택하였다.

〈Table	1>	Multi-objective	functions
--------	----	-----------------	-----------

Objective function	Description	
J1	Peak drift of smart isolation platform	
	Peak drift of passive isolation platform	
J2	RMS velocity of smart isolation platform	
	RMS velocity pf passive isolation platform	

유전자알고리즘에서 각각의 개체들은 퍼지제어기 를 나타내고 암호화(encoding)는 이러한 퍼지제어 기의 유전적 표현방법이라고 말할 수 있다. 퍼지제 어기를 구성하는데 필요한 모든 정보는 염색체라고 불리는 하나의 구조에 암호화된다. 본 연구에서는 모든 입력과 출력을 표현하기 위하여 가우스 소속 함수를 사용하였다. 지금까지 다양한 특성을 가진 유전자 알고리즘이 개발되어 사용되고 있는데 그 중에서 본 연구에서는 NSGA-II(a fast elitist Nondominated Sorting Genetic Algorithm)를 이용하여 파레토 최적해 집합을 찾는다. Deb 등⁸⁾이 제안한 이 알고리즘은 기존의 알고리즘에 비하여 계산시간 을 대폭 줄였고 추가적인 파라미터 없이도 개체의 다양성을 유지하기 위하여 혼잡도 비교연산자를 도 입하였다.

4. 수치해석을 통한 미진동 제어성능 평가

본 연구에서는 전술한 바와 같이 스마트 면진 플 랫폼을 효과적으로 제어할 수 있는 퍼지제어알고리 즘을 개발하기 위하여 다목적 유전자알고리즘인 NSGA-II을 이용하였고 이때 한 세대를 이루는 개 체군은 100개의 개체로 구성하였으며 최적화는 1000세대까지 수행하였고 최적화 수행결과인 파레 토 최적해 집합을 <Fig. 11>에 나타내었다.

최적화 결과인 파레토 최적해 집합을 보면 모든 개체의 J1과 J2의 값이 100%보다 작으므로 수동 면 진플랫폼보다 스마트 면진플랫폼이 더 우수한 제어 성능을 나타내는 것을 알 수 있다. 파레토 최적해집 합을 보면 J1에 대해서는 모든 개체가 70.7%에서 69.0% 사이에 있고 J2에 대해서는 59.5%에서 64.9% 사이에 있으므로 두 목적함수 모두 수동 면 진플랫폼에 비하여 스마트 면진플랫폼이 약 40% 이 상의 효과적인 제어성능을 나타내는 것을 알 수 있 다. 일반적으로 면진플랫폼에 감쇠용량을 늘리게 되 면 면진플랫폼 drift는 줄어들지만 면진플랫폼의 동 적응답은 증가하게 되지만 본 연구에서 제안한 스 마트 면진플랫폼의 경우에는 일반적인 수동 면진플 랫폼에 비하여 면진플랫폼 속도응답과 drift를 동시 에 저감시킬 수 있음을 확인할 수 있다.

(Fig. 11) Optimization results of FLC

본 연구에서는 <Fig. 11>에 나타낸 파레토 최적 해 집합 중에서 검정색 원으로 나타낸 개체를 선택 하여 수치해석을 수행하였고 이것은 하나의 퍼지제 어알고리즘에 대한 설계안이 된다. 선택된 개체의 J1과 J2에 대한 목적함수 값은 각각 69.7% 및 61.6% 로서 이것은 스마트 면진플랫폼을 적용한 예제 구 조물의 면진플랫폼 drift와 속도응답을 수동 시스템 을 적용한 경우에 비하여 약 30%-40%가량의 큰 폭 으로 저감시킬 수 있음을 의미한다. 선택된 개체를 사용하여 퍼지제어알고리즘을 작성한 후 수치해석 을 수행하였고 개발된 제어알고리즘에 의해서 제어 된 스마트 면진플랫폼과 수동 면진플랫폼의 시간이 력응답을 <Fig. 12>와 <Fig. 13>에 나타내었다.

(Fig. 12) Velocity time histories of platform

(Fig. 13) Drift time histories of platform

그림에서 볼 수 있듯이 스마트 면진플랫폼이 수 동 면진플랫폼에 비하여 우수한 동적응답제어성능 을 나타내는 것을 확인할 수 있고 두 응답 중 특히 면진플랫폼의 속도응답을 더욱 효과적으로 제어하 는 것을 알 수 있다. 스마트 면진플랫폼을 구성하는 MR 감쇠기의 제어력은 감쇠기로 전달되는 명령전 압에 의해서 결정되므로 퍼지제어알고리즘에 의해 서 MR 감쇠기로 전달되는 명령전압을 <Fig. 14>에 나타내었다.

그림에서 볼 수 있듯이 퍼지제어알고리즘은 MR 감쇠기의 비선형성을 고려하고 실시간으로 변하는 구조물의 응답을 반영하여 최적의 명령전압을 생성 하므로 생성되는 명령전압은 0V-5V 사이에서 매우 불규칙하게 변하는 것을 알 수 있다.

현재 일반적으로 널리 사용되고 있는 진동설계기 준은 BBN (Bolt Beranek and Newman) 기준¹¹⁾으 로 1/3 옥타브밴드 속도 스펙트럼을 사용하여 첨단 시설물 공장의 미진동 허용기준을 나타내고 있다. 따라서 구조물의 동적응답 중 속도응답이 미진동제 어성능에 가장 큰 영향을 미치므로 다음과 같이 수 동 및 스마트 면진플랫폼, 면진장치를 사용한 경우, 고정기초구조물 등에 대해서 RMS 속도응답을 비교 하여 보았다.

(Fig. 15) Comparison of RMS velocity

그림에서 볼 수 있듯이 스마트 면진플랫폼은 1층 과 플랫폼 자체의 속도응답을 수동 면진플랫폼에 비하여 매우 효과적으로 저감시킬 수 있는 것을 알 수 있다. 이 값은 BBN 진동기준으로 평가해 보았을 때 전 진동수대역에 걸쳐서 정밀진동 VC-E 등급 아 리 수준이다. 1층 속도응답은 수동 면진시스템을 적 용한 경우에 고정기초물에 비해서 약 45%이상 저감 시킬 수 있으므로 일반적인 수동 면진시스템도 미 진동제어에 효과적임을 알 수 있다.

5. 결 론

본 연구에서는 첨단기술산업 시설물의 미진동제 어를 위한 스마트 면진플랫폼의 적용성을 검토하여 보았다. 이를 위하여 50N 용량의 MR 감쇠기를 이 용하여 스마트 면진플랫폼을 구성하였고 파라미터 연구를 통하여 최적의 수동 스마트 면진플랫폼을 설계하였다. 스마트 면진플랫폼을 제어하기 위해 퍼 지제어알고리즘을 사용하였고 이를 다목적 유전자 알고리즘인 NSGA-II로 최적화하였다. 수치해석결 과 스마트 면진플랫폼을 사용하면 서로 상충관계에 있는 면진플랫폼의 drift와 속도응답을 동시에 매우 효과적으로 제어할 수 있음을 알 수 있었다. 또한 구조물 전체를 지반과 격리시킨 스마트 면진시스템 에 비하여 첨단 정밀가공기계가 설치되는 층만을 대상으로 미진동제어를 수행하는 스마트 면진플랫 폼을 사용하면 경제적인 대안이 될 수 있을 것이다.

감사의 글

이 논문은 2011년 정부(교육과학기술부)의 재원 으로 한국연구재단의 지원을 받아 수행된 기초연구 사업임(No.2011-0011165).

References

- Lee, H.K., Pak, J.H., Won, Y.J., Park, H.D. and Kim, D.H., "A study on the structural dynamic design for sub-micro vibration control in high class semiconductor factory by semi-empirical method", Journal of the Korean Society for Noise and Vibration Engineering, Vol. 9, No. 6, 1999, pp.1227-1233.
- Xu, Y.L., Tang, Z.C., Chen, J., Liu, H.J. and Chen, J., "Microvibration control platform for high technology facilities subject to traffic-induced ground motion", Engineering Structures, Vol. 25, 2003, pp.1069-1082.
- Yang, J.N. and Agrawal, A.K., "Protective systems for high-technology facilities against microvibration and earthquake", Journal of Structural Engineering and Mechanics, Vol. 10, No. 6, 2000, pp.561-567.
- Spencer, B.F.Jr., Johnson, E.A. and Ramallo, J.C., "Smart isolation for seismic control", JSME Int. J. Ser. C., Vol. 43, No. 4, 2000, pp.

704-711.

- Bani-Hani, K.A. and Sheban, M.A., "Semiactive neuro-control for base-isolation system using magnetorheological (MR) dampers", Earthquake Engng Struct. Dyn., Vol. 35, 2006, pp.1119-1144
- Kim, H.S., Kang, J.W. and Kim, Y.S., "Microvibration control of high technology facilities subjected to train-induced excitation using smart base isolation", Journal of the Korean Association for Spacial Structures, Vol. 12, No. 2, 2012, pp.99-108.
- Mamdani, E.H. and Assilian, S., "An experiment in linguistic synthesis with a fuzzy logic controller", International Journal of Man-Machine Studies, Vol. 7, No. 1., 1975, pp.1-13.
- Deb, K., Pratap, A., Agrawal, S. and Meyarivan, T., "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II", Technical Report No. 200001, Kanpur: Indian Institute of Technology Kanpur, India, 2000.
- Kang, J.W., Kim, H.S. and Lim, J.H., "Multi-objective fuzzy control of a spacial structure using smart base isolation system", Journal of the Korean Association for Spacial Structures, Vol. 11, No. 2, 2011, pp.89-99.
- Wen, Y.K., "Method of Random Vibration of Hysteretic Systems", J. Engng. Mech. Division, Proceedings, ASCE, 102, 1976, pp. 249-263.
- Gordon, C.G., "Generic criteria for vibration sensitive equipment", Proceedings of SPIE, 1991, pp.71-85.

(접 수 일 자 : 2014년 05월 09일) (심사완료일자 : 2014년 05월 19일) (게재확정일자 : 2014년 05월 27일)