• Title/Summary/Keyword: hidden Markov model

Search Result 641, Processing Time 0.022 seconds

Development of a Vision Based Fall Detection System For Healthcare (헬스케어를 위한 영상기반 기절동작 인식시스템 개발)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Lee, Chi-Geun;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.279-287
    • /
    • 2006
  • This paper proposes a method to detect fall action by using stereo images to recognize emergency situation. It uses 3D information to extract the visual information for learning and testing. It uses HMM(Hidden Markov Model) as a recognition algorithm. The proposed system extracts background images from two camera images. It extracts a moving object from input video sequence by using the difference between input image and background image. After that, it finds the bounding rectangle of the moving object and extracts 3D information by using calibration data of the two cameras. We experimented to the recognition rate of fall action with the variation of rectangle width and height and that of 3D location of the rectangle center point. Experimental results show that the variation of 3D location of the center point achieves the higher recognition rate than the variation of width and height.

  • PDF

Sliding Active Camera-based Face Pose Compensation for Enhanced Face Recognition (얼굴 인식률 개선을 위한 선형이동 능동카메라 시스템기반 얼굴포즈 보정 기술)

  • 장승호;김영욱;박창우;박장한;남궁재찬;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.155-164
    • /
    • 2004
  • Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user and is able to doface recognition, which is vital for many surveillance-based systems. The advantage of face recognition compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to the decreasing in dimension from image acquisition step and various changes associated with face pose and background. There are many factors that deteriorate performance of face recognition such as thedistance from camera to the face, changes in lighting, pose change, and change of facial expression. In this paper, we implement a new sliding active camera system to prevent various pose variation that influence face recognition performance andacquired frontal face images using PCA and HMM method to improve the face recognition. This proposed face recognition algorithm can be used for intelligent surveillance system and mobile robot system.

ImprovementofMLLRAlgorithmforRapidSpeakerAdaptationandReductionofComputation (빠른 화자 적응과 연산량 감소를 위한 MLLR알고리즘 개선)

  • Kim, Ji-Un;Chung, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.65-71
    • /
    • 2004
  • We improved the MLLR speaker adaptation algorithm with reduction of the order of HMM parameters using PCA(Principle Component Analysis) or ICA(Independent Component Analysis). To find a smaller set of variables with less redundancy, we adapt PCA(principal component analysis) and ICA(independent component analysis) that would give as good a representation as possible, minimize the correlations between data elements, and remove the axis with less covariance or higher-order statistical independencies. Ordinary MLLR algorithm needs more than 30 seconds adaptation data to represent higher word recognition rate of SD(Speaker Dependent) models than of SI(Speaker Independent) models, whereas proposed algorithm needs just more than 10 seconds adaptation data. 10 components for ICA and PCA represent similar performance with 36 components for ordinary MLLR framework. So, compared with ordinary MLLR algorithm, the amount of total computation requested in speaker adaptation is reduced by about 1/167 in proposed MLLR algorithm.

Hand gesture based a pet robot control (손 제스처 기반의 애완용 로봇 제어)

  • Park, Se-Hyun;Kim, Tae-Ui;Kwon, Kyung-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.145-154
    • /
    • 2008
  • In this paper, we propose the pet robot control system using hand gesture recognition in image sequences acquired from a camera affixed to the pet robot. The proposed system consists of 4 steps; hand detection, feature extraction, gesture recognition and robot control. The hand region is first detected from the input images using the skin color model in HSI color space and connected component analysis. Next, the hand shape and motion features from the image sequences are extracted. Then we consider the hand shape for classification of meaning gestures. Thereafter the hand gesture is recognized by using HMMs (hidden markov models) which have the input as the quantized symbol sequence by the hand motion. Finally the pet robot is controlled by a order corresponding to the recognized hand gesture. We defined four commands of sit down, stand up, lie flat and shake hands for control of pet robot. And we show that user is able to control of pet robot through proposed system in the experiment.

  • PDF

A Real-Time Implementation of Isolated Word Recognition System Based on a Hardware-Efficient Viterbi Scorer (효율적인 하드웨어 구조의 Viterbi Scorer를 이용한 실시간 격리단어 인식 시스템의 구현)

  • Cho, Yun-Seok;Kim, Jin-Yul;Oh, Kwang-Sok;Lee, Hwang-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.58-67
    • /
    • 1994
  • Hidden Markov Model (HMM)-based algorithms have been used successfully in many speech recognition systems, especially large vocabulary systems. Although general purpose processors can be employed for the system, they inevitably suffer from the computational complexity and enormous data. Therefore, it is essential for real-time speech recognition to develop specialized hardware to accelerate the recognition steps. This paper concerns with a real-time implementation of an isolated word recognition system based on HMM. The speech recognition system consists of a host computer (PC), a DSP board, and a prototype Viterbi scoring board. The DSP board extracts feature vectors of speech signal. The Viterbi scoring board has been implemented using three field-programmable gate array chips. It employs a hardware-efficient Viterbi scoring architecture and performs the Viterbi algorithm for HMM-based speech recognition. At the clock rate of 10 MHz, the system can update about 100,000 states within a single frame of 10ms.

  • PDF

Word Verification using Similar Word Information and State-Weights of HMM using Genetic Algorithmin (유사단어 정보와 유전자 알고리듬을 이용한 HMM의 상태하중값을 사용한 단어의 검증)

  • Kim, Gwang-Tae;Baek, Chang-Heum;Hong, Jae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.97-103
    • /
    • 2001
  • Hidden Markov Model (HMM) is the most widely used method in speech recognition. In general, HMM parameters are trained to have maximum likelihood (ML) for training data. Although the ML method has good performance, it dose not take account into discrimination to other words. To complement this problem, a word verification method by re-recognition of the recognized word and its similar word using the discriminative function of the two words. To find the similar word, the probability of other words to the HMM is calculated and the word showing the highest probability is selected as the similar word of the mode. To achieve discrimination to each word the weight to each state is appended to the HMM parameter. The weight is calculated by genetic algorithm. The verificator complemented discrimination of each word and reduced the error occurred by similar word. As a result of verification the total error is reduced by about 22%

  • PDF

A Study On Intelligent Robot Control Based On Voice Recognition For Smart FA (스마트 FA를 위한 음성인식 지능로봇제어에 관한 연구)

  • Sim, H.S.;Kim, M.S.;Choi, M.H.;Bae, H.Y.;Kim, H.J.;Kim, D.B.;Han, S.H.
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2018
  • This Study Propose A New Approach To Impliment A Intelligent Robot Control Based on Voice Recognition For Smart Factory Automation Since human usually communicate each other by voices, it is very convenient if voice is used to command humanoid robots or the other type robot system. A lot of researches has been performed about voice recognition systems for this purpose. Hidden Markov Model is a robust statistical methodology for efficient voice recognition in noise environments. It has being tested in a wide range of applications. A prediction approach traditionally applied for the text compression and coding, Prediction by Partial Matching which is a finite-context statistical modeling technique and can predict the next characters based on the context, has shown a great potential in developing novel solutions to several language modeling problems in speech recognition. It was illustrated the reliability of voice recognition by experiments for humanoid robot with 26 joints as the purpose of application to the manufacturing process.

Comparison of ICA Methods for the Recognition of Corrupted Korean Speech (잡음 섞인 한국어 인식을 위한 ICA 비교 연구)

  • Kim, Seon-Il
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • Two independent component analysis(ICA) algorithms were applied for the recognition of speech signals corrupted by a car engine noise. Speech recognition was performed by hidden markov model(HMM) for the estimated signals and recognition rates were compared with those of orginal speech signals which are not corrupted. Two different ICA methods were applied for the estimation of speech signals, one of which is FastICA algorithm that maximizes negentropy, the other is information-maximization approach that maximizes the mutual information between inputs and outputs to give maximum independence among outputs. Word recognition rate for the Korean news sentences spoken by a male anchor is 87.85%, while there is 1.65% drop of performance on the average for the estimated speech signals by FastICA and 2.02% by information-maximization for the various signal to noise ratio(SNR). There is little difference between the methods.

Speech Recognition in Noisy environment using Transition Constrained HMM (천이 제한 HMM을 이용한 잡음 환경에서의 음성 인식)

  • Kim, Weon-Goo;Shin, Won-Ho;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-89
    • /
    • 1996
  • In this paper, transition constrained Hidden Markov Model(HMM) in which the transition between states occur only within prescribed time slot is proposed and the performance is evaluated in the noisy environment. The transition constrained HMM can explicitly limit the state durations and accurately de scribe the temporal structure of speech signal simply and efficiently. The transition constrained HMM is not only superior to the conventional HMM but also require much less computation time. In order to evaluate the performance of the transition constrained HMM, speaker independent isolated word recognition experiments were conducted using semi-continuous HMM with the noisy speech for 20, 10, 0 dB SNR. Experiment results show that the proposed method is robust to the environmental noise. The 81.08% and 75.36% word recognition rates for conventional HMM was increased by 7.31% and 10.35%, respectively, by using transition constrained HMM when two kinds of noises are added with 10dB SNR.

  • PDF

The Chinese Characters Learning Contents Based on Gesture Recognition Using HMM Algorithm (HMM을 이용한 제스처 인식 기반 한자 학습 콘텐츠)

  • Song, Dae-Hyeon;Kim, Dong-Min;Lee, Chil-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.1067-1074
    • /
    • 2012
  • In this paper, we proposed a contents of Chinese characters learning based on gesture recognition using HMM(hidden markov model) algorithm. Input image of the system is obtained in 3-dimensional information from the TOF camera, and the method of gesture recognition is consisted of part of forecasting user's posture in two infrared images and part of recognizing gestures from continuous poses. In the communication between human and computer, this system provided convenience that user can manipulate it easily by not using any further equipment but action. Because this system raise immersion and interest by using two large display and various multimedia factor, it can maximize information transmission. The edutainment Chinese character contents proposed in this paper provide educational effect that use can master Chinese character naturally with interest, and it can be expected a synergy effect via content experience because it is based on gesture recognition.