Sliding Active Camera-based Face Pose Compensation for Enhanced Face Recognition

얼굴 인식률 개선을 위한 선형이동 능동카메라 시스템기반 얼굴포즈 보정 기술

  • Published : 2004.11.01

Abstract

Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user and is able to doface recognition, which is vital for many surveillance-based systems. The advantage of face recognition compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to the decreasing in dimension from image acquisition step and various changes associated with face pose and background. There are many factors that deteriorate performance of face recognition such as thedistance from camera to the face, changes in lighting, pose change, and change of facial expression. In this paper, we implement a new sliding active camera system to prevent various pose variation that influence face recognition performance andacquired frontal face images using PCA and HMM method to improve the face recognition. This proposed face recognition algorithm can be used for intelligent surveillance system and mobile robot system.

최근 지능형 로봇에 대한 관심이 모아지고 있다. 지능형 로봇의 가장 큰 특징은 사용자를 추적, 인식하고 그 결과를 기반으로 상호활동적인 대응을 할 수 있다는 점이다. 얼굴인식이 다른 생채인식과의 비교에서 장점을 가질 수 있는 점은 비 강제성과 비 접촉성을 들 수 있다. 그러나 얼굴인식은 얼굴 취득단계부터 차원의 감소가 발생하고 인식하고자 하는 얼굴 및 주변 환경 변화가 매우 심하기 때문에 다른 생체인식에 비하여 인식률이 낮다. 얼굴인식의 성능을 저하시키는 요인들로는 조명변화, 포즈변화, 표정변화, 카메라와의 거리 등을 들 수 있다. 본 논문에서는 실제 환경에서 얼굴 인식 성능에 가장 많은 영향을 미치는 포즈변화에 대응하기 위하여 새로운 선형이동 능동형 카메라를 개발하여, 정면 얼굴에 근접한 영상을 취득하고 주성분 분석 및 Hidden Markov Model 알고리듬을 이용하여 인식률을 개선하고자 한다. 제한된 방법은 지능형 보안시스템 및 모바일 로봇에 적용하는 것을 목표로 개발 되었지만, 높은 정확도의 얼굴인식을 요구하는 응용분야에 널리 적용할 수가 있다.

Keywords

References

  1. J. Zang, Y. Yan, and M. Lades, 'Face recognition: Eigenface, elastic matching, and neural nets,' Proc. IEEE, vol. 85, no. 9, pp. 1423-1435, 1997 https://doi.org/10.1109/5.628712
  2. O. Nakamura, S. mathur and T. Minami, 'Identification of human faces based on isodensity maps,' Pattern Recognition, vol. 24, pp. 236-272, 1991 https://doi.org/10.1016/0031-3203(91)90068-G
  3. C. H. The and R. T. Chin, 'On image analysis by the method of moments,' IEEE Trans. Patt. Anal. Machine Intell. vol. 10, pp. 496-513, 1988 https://doi.org/10.1109/34.3913
  4. S. R. Dubois and F. H. Grantz, 'A autoregressive model approach to two-demensional shape classification,' IEEE Trans. Patt. Anal. Machine Intell. vol. 8, pp. 56-65, 1986
  5. M. Turk and A. Pentland, 'Eigenfaces for recognition,' Journal, Cognitive Neuroscience, vol. 3, pp 72-86, 1991
  6. A. J. O'Toole, H. Abdi, K. A. Deffenbacher and D. Valentin, 'Low dimensional representation of faces in high dimensions of the face space,' J. Opt. Soc. Am. A, vol. 10, pp. 405-411, 1993 https://doi.org/10.1364/JOSAA.10.000405
  7. L. Sirovich and M. Kirby, 'Low dimensional procesure for the characterization of human faces,' J. Opt. Soc. Am. vol. 4, pp. 519-524, 1987 https://doi.org/10.1364/JOSAA.4.000519
  8. Z, Q. Hong, 'Algebraic feature extraction of images for recognition,' Pattern Recognition, vol. 24, pp. 211-219, 1991 https://doi.org/10.1016/0031-3203(91)90063-B
  9. L. Sirivich and M.kirby, 'Low-dimensional procedure for the characterization of human faces,' J. Opt. Soc. Amer., vol. 4, pp. 519-524, 1987 https://doi.org/10.1364/JOSAA.4.000519
  10. S. Gong, S. J. McKenna, A. Psarrou, 'Dynamic Vision,' Imperical College press, 2000
  11. E. Oja, 'Principal components, minor components, and linear neural networks,' Neural Networks, vol. 5, pp. 927-935, 1992 https://doi.org/10.1016/S0893-6080(05)80089-9
  12. H. Rowley, S. Baluja and T. Kanade, 'Neural Network-Based Face Detection,' IEEE Trans. Patt. Anal. Machine Intell., vol. 20, no. 1, pp. 203-208, 1998 https://doi.org/10.1109/34.655647
  13. E. Osuna, R. Freund and F. Girosi, 'Training support vector machines: an application to face detection,' Proc. IEEE Conf. Computer Vision, Pattern Recognition, pp. 130-136, 1997 https://doi.org/10.1109/CVPR.1997.609310
  14. P. Belhumeur, J. Hespanha, and D. Kiegman, 'Eigenfaces vs. Fisherfaces: Recognition Using Class Specfic Linear Projection,' IEEE Trans. PAMI, vol. 19, no. 7, pp. 711-720, 1997 https://doi.org/10.1109/34.598228
  15. L. Wiskott, J. Fellous, N. Krger and C. Malsburg, 'Face Recognition by Elastic Bunch Graph Matching,' IEEE Trans. PAMI, vol. 19, pp. 775-779, 1997 https://doi.org/10.1109/34.598235
  16. F. Samaria and S. Young, 'HMM based architecture for face identification,' Image and Vision Computing, vol. 12, pp. 537-543, 1994 https://doi.org/10.1016/0262-8856(94)90007-8
  17. P. Penev and J. Attick, 'Local Feature Analysis: a general statistical theory for object representation,' Network: Computation in Neural Systems, vol. 7, no. 3, pp. 447-500, 1996
  18. P. Comon, 'Independent component analysis, A new concept?,' Signal Processing, vol. 36, no. 3, pp.287-314, 1994 https://doi.org/10.1016/0165-1684(94)90029-9
  19. C. W. Park, Y. O. Kim, H. K. Sung, 'Multiple Face Segmentation and Tracking based on Robust Hausdorff Distance Matching,' Int. Journal of Fuzzy Logic and Int. System, vol. 3, no. 1, pp. 87-92, 2003 https://doi.org/10.5391/IJFIS.2003.3.1.087
  20. L. M. Brown, Y. L. Tian, 'Comparative study of coarse head pose estimation,' IEEE Workshop on Motion and Video Computing, pp. 125-130, 2002 https://doi.org/10.1109/MOTION.2002.1182224
  21. Y. O. Kim, J. k. Paik, J. G. Heo, A. Koschan, B. Abidi and M. Abidi, 'Automatic Face Region Tracking for Highly Accurate Face Recognition in Unconstrained Environments,' IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 29-36, 2003 https://doi.org/10.1109/AVSS.2003.1217898
  22. C. W. Park, E. Kim and M. Park, 'Human Face Detection via Characterized Convex Regional Relationship in Color Images,' IEICE Trans. INF. & SYST, vol. E86-D, no. 4, pp. 759-762, 2003
  23. T. G. Lee, S. K. Park and M. S. Kim, 'Face Detection and Recognition with Multiple Appearance Models for Mobile Robot Application,' Proceedings ICCAS, pp. 215-218, 2002