• Title/Summary/Keyword: heat equivalent

Search Result 418, Processing Time 0.028 seconds

Replacement Investment with Pallet Fuel System in Greenhouse Fruit and Vegetables (목재펠릿시스템의 대체투자 가능성 분석 - 시설과채 사례 -)

  • Kim, Seongsup;Kim, Taehoo;Seo, Sangtaek
    • Journal of Agricultural Extension & Community Development
    • /
    • v.25 no.3
    • /
    • pp.149-160
    • /
    • 2018
  • This study aimed to analyze the replacement investment of the diesel fuel system with the pallet fuel system in the Korean farming sector. Equivalent annual annuity approach was used to resolve a discrepancy of useful life in capital goods and to facilitate investment analyses in an independent perspective. Data was obtained from previous studies on economic analysis of greenhouse tomato, paprika and cucumber. Results showed that the replacement with the pallet fuel system was acceptable irrespective of the remaining period of useful life for the diesel fuel system. In addition, sensitivity analysis with government support level, repair cost, and light and heat energy cost show ed robustness in the possibility of replacement with the pallet fuel system while the speed of replacement was accelerated with an increase in the amount of diesel fuel used and price of diesel fuel, and a decrease in price of the pallet fuel. The result implied that the replacement investment rather than a new investment was appropriate for existing greenhouse farmers and the pallet fuel system was acceptable to replace existing diesel fuel system in producing greenhouse tomato, paprika and cucumber.

Life Cycle Cost Analysis of Primary Cooling System by Systematic Support Cost (각종지원금제도에 의한 냉열원시스템의 라이프 사이클 코스트 분석)

  • Kim, C.M.;Jung, S.S.;Choi, C.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2002
  • The purpose of this study is to analyze the life cycle cost of primary cooling system by systematic support cost. Life Cycle Cost(LCC) is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. In order to select economical primary cooling system in early heat source plan stages, the research investigates cost items and cost characteristics during project process phases such as planning/design, construction, maintenance /management, and demolition/sell phases. The study also analyze the life cycle cost by capacity leading to suggest the most economical primary cooling system by systematic support cost.

An Effective Approach of Equivalent Elastic Method for Three-Dimensional Finite Element Analysis of Ceramic Honeycomb Substrates (세라믹 하니컴 담체의 3차원 유한요소해석을 위한 등가탄성방법의 효과적인 접근)

  • Baek, Seok-Heum;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.223-233
    • /
    • 2011
  • A ceramic monolithic catalyst is a honeycomb structure that consists of two layers. The honeycomb structure is regarded as a continuum in structure and heat-flow analysis. The equivalent mechanical properties of the honeycomb structure were determined by performing finite element analysis (FEA) for a test specimen. Bending strength experiments and FEA of the test specimen used in ASTM C1674-08 standard test were performed individually. The bonding coefficient between the cordierite ceramic layer and the washcoat layer was almost zero. The FEA test specimen was modeled on the basis of the bonding coefficient. The elastic modulus, Poisson's ratio, and the thermal properties of the ceramic monolithic substrate were determined by performing the FEA of the test specimen.

A Study on the Oxygen Consumption Rate and Explosion Energy of Combustible Wood Dust in Confined System - Part I: Quantification of Explosion Energy and Explosive Efficiency (밀폐계 가연성 목재분진의 폭발에너지와 산소소모율에 관한 연구 - Part I: 폭발에너지의 정량화 및 폭발효율)

  • Kim, Yun Seok;Lee, Min Chul;Lee, Keun Won;Rie, Dong Ho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.55-63
    • /
    • 2016
  • A dust explosion is a phenomenon of strong blast wave propagation involving destruction which results from dust pyrolysis and rapid oxidation in a confined space. There has been some research done to find individual explosion characteristics and common physical laws for various dust types. However, there has been insufficient number of studies related to the heat of combustion of materials and the oxygen consumption energy about materials in respect of dust explosion characteristics. The present study focuses on the relationship between dust explosion characteristics of wood dust samples and oxygen consumption energy. Since it is difficult to estimate the weight of suspended dust participating in explosions in dust explosion and mixtures are in fuel-rich conditions concentrations with equivalent ratios exceeding 1, methods for estimating explosion overpressure by applying oxygen consumption energy based on unit volume air at standard atmospheric pressure and temperature are proposed. In this study an oxygen consumption energy model for dust explosion is developed, and by applying this model to TNT equivalent model, initial explosion efficiency was calculated by comparing the results of standardized dust explosion experiments.

An Analysis of Low-level Stability in the Heavy Snowfall Event Observed in the Yeongdong Region (영동지역 대설 사례의 대기 하층 안정도 분석)

  • Lee, Jin-Hwa;Eun, Seung-Hee;Kim, Byung-Gon;Han, Sang-Ok
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.209-219
    • /
    • 2012
  • Extreme heavy snowfall episodes have been investigated in case of accumulated snowfall amount larger than 50 cm during the past ten years, in order to understand the association of low-level stability with heavy snowfall in the Yeongdong region. In general, the selected 4 events have similar synoptic setting such as the Siberian High extended to East Sea along with the Low passing by the southern Korean Peninsula, eventually inducing easterly in the Yeongdong region. Specifically moist-adiabatically neutral layer has been observed during the heavy snowfall period, which was easily identified using vertical profiles of equivalent potential temperature observed at Sokcho, whereas convective unstable layer has been formed over the East sea due to relatively warm sea surface temperature (SST) about $8{\sim}10^{\circ}C$ and lower temperature around 1~2 km above the surface, obtained from RDAPS. Difference of equivalent potential temperature between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually increased before the snowfall period. Instability-induced moisture supply to the atmosphere from the East sea, being cooled and saturated by the upper cold surge, would make low-level ice cloud, and eventually move inland by the easterly flow. Heavy snowfall will be enhanced in association with low-level convergence by surface friction and upslope wind against Taebaek mountains. This study emphasizes the importance of low level stability in the Yeongdong region using the radiosonde sounding and RDAPS data, which should quantitatively be examined through numerical model as well as heat and moisture supply from the ocean.

Correlation between Microstructure and Mechanical Properties of Base Metal and HAZ of 500 MPa Steel Plates for Offshore Platforms (해양플랜트용 500 MPa급 후판강의 모재 및 HAZ의 미세조직과 기계적 특성의 상관관계)

  • Park, Jiwon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.123-130
    • /
    • 2020
  • In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 ℃ is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 ℃ is higher for the H-H specimen than for the L-H specimen.

Conductance Study on the Characteristics of Solution Containing Crown Ethers and Univalent Cation Perchlorates

  • Lee, Shim-Sung;Park, Sung-Oh;Jung, Jong-Hwa;Lee, Bu-Yong;Kim, Si-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.276-281
    • /
    • 1990
  • The equivalent conductance of univalent cation (potassium, silver, thallium and ammonium) perchlorates in methanol containing 18-membered crown ethers, 18-crown-6 (18C6) and 1,10-dithia-18-crown-6 (DT18C6) were measured at different temperatures. The equivalent conductances of ammonium perchlorate were increased by increasing content of DT18C6 exceptionally, due to more favorable solvations than complexations. From the equivalent conductance changes, the formation constants for 1:1 compmlexes have been determined, and the values of enthalpy and entropy changes have been calculated. The complexations of 18C6 and DT18C6 with the univalent cations under investigation are all exothermic and the ${\Delta}$S values are all negative and no considerable differences around 50 J/ (k mol). The selectivity order of 18C6 is $K^+ > Tl^+ > Ag^+ > NH_4^+$, while that of DT18C6 is $Ag^+ > Tl^+ > NH_4^+ > K^+$. By sulfur substitutions in 18C6 result in significant decrease in stability, but the stability of $Ag^+$-DT18C6 complex are $10^4$ times larger than those of $K^+$. This increase of stabilities for $Ag^+$-DT18C6 complex are primary due to the result of favorable exothermic heat of reaction between the polarizable soft cation and soft sulfur centers. In NMR experiment, the stepwise additions of cation perchlorates into crown ether solutions induced two major spectral changes. First, the resonance all shift down field and the cation induced shifts were linear up to 1:1 cation/crown ratio, above which no further changes were observed. On the basis of these results, it could be concluded that 1:1 complex is formed. Second, the magnitudes of cation induced shifts were different each other in same ligand. By addition of silver ion to the solution of DT18C6, the largest shift of proton peak near the sulfur atom was observed. These effects are also arisen from the results of covalent bonding between "soft-soft" interactions.

An Evaluation of Thermal Comfort of New Towns in Seoul Metropolitan Area (수도권 신도시의 열쾌적성 평가)

  • Oh, Kyu Shik;Lee, Min Bok;Lee, Dong Woo
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.55-71
    • /
    • 2013
  • This study assessed the thermal comfort of new towns in the Seoul Metropolitan Area (Ilsan, Bundang, Dongtan1) using PET (Physiologically Equivalent Temperature) which refers to real human heat stress. The relationship between PET and urban spatial elements was also analyzed using multiple regression analysis. The study results show that the thermal comfort of Dongtan 1, which is considering a reduction of the urban heat island effect in the planning phase, is higher than other cities. In addition, through regression results, the impervious ratio, floor area ratio, commercial area ratio, and residential area ratio were found to be major factors increasing PET. Moreover, the river area ratio and NDVI were found to be major factors decreasing PET. This study has scientific significance as research that focuses on the assessment of thermal comfort scientifically and definitely, by estimating PET for an entire urban area using GIS analysis that included remote sense analysis and the wind field model. The results of this study can be used in preparing more effective urban plans for the promotion of citizen thermal comfort.

Electrochemical Performance of Activated Carbon Electrode Materials with Various Post Treatments for EDLC (활성탄의 후 처리에 의한 EDLC 전극재의 전기화학 성능 개선)

  • Lee, Eunji;Kwon, Soon Hyung;Choi, Pooreum;Jung, Ji Chul;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.285-292
    • /
    • 2014
  • Commercial activated-carbon used as the electrode material of an electric double-layer capacitor (EDLC) was posttreated with various acids and alkalis to increase its capacitance. The carbon samples prepared were then heat-treated in order to control the amount of acidic functional groups formed by the acid treatments. Coin-type EDLC cells with two symmetric carbon electrodes were assembled using the prepared carbon materials and an organic electrolyte. The electrochemical performance of the EDLC was measured by galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the various activated carbons, the carbon electrodes (CSsb800) prepared by the treatments of coconutshell-based carbon activated with NaOH and $H_3BO_5$, and then heat treated at $800^{\circ}C$ under a flow of nitrogen gas, showed relatively good electrochemical performance. Although the specific-surface-area of the carbon-electrode material ($1,096m^2/g$) was less than that of pristine activated-carbon ($1,122m^2/g$), the meso-pore volume increased after the combined chemical and heat treatments. The specific capacitance of the EDLC increased from 59.6 to 74.8 F/g (26%) after those post treatments. The equivalent series resistance of EDLC using CSsb800 as electrode was much lower than that of EDLC using pristine activated carbon. Therefore, CSsb800 exhibited superior electrochemical performance at high scan rates due to its low internal resistance.

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.