DOI QR코드

DOI QR Code

An Evaluation of Thermal Comfort of New Towns in Seoul Metropolitan Area

수도권 신도시의 열쾌적성 평가

  • Oh, Kyu Shik (Department of Urban Planning, Hanyang University) ;
  • Lee, Min Bok (Department of Urban Planning, Hanyang University) ;
  • Lee, Dong Woo (Department of Urban Planning, Hanyang University)
  • Received : 2013.01.14
  • Accepted : 2013.04.24
  • Published : 2013.04.30

Abstract

This study assessed the thermal comfort of new towns in the Seoul Metropolitan Area (Ilsan, Bundang, Dongtan1) using PET (Physiologically Equivalent Temperature) which refers to real human heat stress. The relationship between PET and urban spatial elements was also analyzed using multiple regression analysis. The study results show that the thermal comfort of Dongtan 1, which is considering a reduction of the urban heat island effect in the planning phase, is higher than other cities. In addition, through regression results, the impervious ratio, floor area ratio, commercial area ratio, and residential area ratio were found to be major factors increasing PET. Moreover, the river area ratio and NDVI were found to be major factors decreasing PET. This study has scientific significance as research that focuses on the assessment of thermal comfort scientifically and definitely, by estimating PET for an entire urban area using GIS analysis that included remote sense analysis and the wind field model. The results of this study can be used in preparing more effective urban plans for the promotion of citizen thermal comfort.

본 연구는 인간의 생리학적요소를 고려한 PET(Physiologically Equivalent Temperature)를 산정하여 수도권 신도시(분당, 일산, 동탄1)의 열쾌적성을 평가하였다. 또한 선행연구 고찰을 통해 열쾌적성과 관련된 도시공간요소들을 선정하고 회귀분석을 실시하여 PET와 도시공간요소들과의 관계를 분석하였다. 분석결과, 3개 신도시 중 계획단계에서 열섬 저감효과를 고려한 2기 신도시인 동탄1이 1기 신도시인 분당, 일산에 비해 열쾌적성이 우수한 것으로 나타났다. 불투수면적률, 용적률, 상업면적률, 주거면적률 등이 PET를 상승시키는 주요 변수로 분석되었으며 하천면적률, 식생활력도(NDV) 등이 PET를 저감시키는 것으로 나타났다. 본 연구는 위성영상 분석기법, 바람길 모델 등과 같은 GIS 공간분석기법을 복합적으로 활용하여 도시전체 공간을 대상으로 PET를 산정함으로써 열쾌적성을 과학적이고도 구체적으로 평가한 선험적 연구로서 의의를 지닌다. 또한, 본 연구를 통해 도출된 PET와 도시공간요소와의 관계분석 결과는 도시계획 수립단계에서 도시민의 열쾌적성을 제고할 수 있는 계획안 수립에 기여할 수 있을 것이다.

Keywords

References

  1. Bosselmann, P; Arens, E. 1991, Sun, Wind, and Pedestrian Comfort-A Study of Toronto's Central area, Center for Environmental Design Research University of California at Berkeley.
  2. Bouyer, J; Vinet, J; Delpech, P; Carre, S. 2007, Thermal Comfort Assessment in Semi-outdoor Environments: Application to Comfort Study in Stadia, Journal of Wind Engineering and Industrial Aerodynamics, 95(9-11):963-976. https://doi.org/10.1016/j.jweia.2007.01.022
  3. Cao, X; Onishi, A; Chen, J; Imura, H. 2010, Quantifying the Cool Island Intensity of Urban Parks using ASTER and IKONOS Data, Landscape and Urban Planning, 96(4):224-231. https://doi.org/10.1016/j.landurbplan.2010.03.008
  4. Chang, C, R; Li, M. H; Chang, S. D. 2007, A Preliminary Study on the Local Cool-island Intensity of Taipei City Parks, Landscape and Urban Planning, 80(4):386-395. https://doi.org/10.1016/j.landurbplan.2006.09.005
  5. Chun, M. Y; Lee, S. J; Kim, J. Y; Lee, S. B; Kim, T. Y. 2010, Evaluation of the Thermal Environment and Comfort in Apartment Complex using Unsteady-state CFD Simulation, The Journal of Korea Institute of Ecological Architecture and Environment, 10(4):67-73.
  6. Chun, B. S; Kim, H. Y. 2010, Analysis of Urban Heat Island Effect Using Information from 3-Dimensional City Model, The Journal of GIS Association of Korea, 18(4):1-11.
  7. Chun, B. S; Guldmann, J. M. 2012, Spatial Analysis of the Urban Heat Island Using a 3-D City Model", The Journal of GIS Association of Korea, 24(4):1-16.
  8. Development-Technical Manual 2007 Edition, http://www.ibec.or.jp
  9. Ellefsen, R; Cionco, R. M. 1998, High Resolution Urban Morphology Data for Urban Wind Flow Modeling, Atmospheric Environment, 32(1): 7-17. https://doi.org/10.1016/S1352-2310(97)00274-4
  10. Emmanuel, R. 1997, Urban Vegetational Change as an Indicator of Demographic Trends in Cities: The Case of Detroit, Environment & Planning B, 24:415-426. https://doi.org/10.1068/b240415
  11. Fanger, P. O. 1970, Thermal Comfort: Analysis and Applications in Environmental Engineering, McGraw-Hill.
  12. Gallo, K. P; Eastering, D. R; Peterson, T. C. 1996, The Influence of Land Use/Land Cover on Climatological Values of the Diurnal Temperature range, Journal of Climate, 9:2941-2944. https://doi.org/10.1175/1520-0442(1996)009<2941:TIOLUC>2.0.CO;2
  13. Givoni, B. 1991, Impact of Planted Areas on Urban Environmental Quality, Atmosphere Environment, 25(3):289-299.
  14. Ha, S. K; Kim, J. I. 1997, A Study on the Quality of Life : Policy Themes and Indicators, The Journal of Korea Planners Association, 32(5):155-168.
  15. Ha, S. K; Kim, J. I. 2000, Urban Management Theory, Publisher of Hyungseol.
  16. Honjo, T. 2009, Thermal Comfort in Outdoor Environment, Global Environment Research, 13(1):43-47.
  17. Hong, Y. S. 2007, Bury these Dreams in the Real Estate, Publisher of the Era of the Window.
  18. Hoppe, P. 1999, The Physiological Equivalent Temperature: A Universal Index for the Biometeorological Assessment of the Thermal Environment, International Journal Biometeorology, 43:71-75. https://doi.org/10.1007/s004840050118
  19. Hoppe, P. 2002, Different Aspects of Assessing Indoor and Outdoor Thermal Comfort, Energy and Building, 34(2):661-665. https://doi.org/10.1016/S0378-7788(02)00017-8
  20. Hwang, Y. J; Lee, J. K; Jeong, Y. M; Koo, K. M; Lee, D. H; Kim, I. K; Jin, S. W; Kim, S. H. 2009, Cooling Performance of a Vertical Ground-coupled Heat Pump System Installed in a School Building, Renewable Energy, 34(3):578-582. https://doi.org/10.1016/j.renene.2008.05.042
  21. Jendritzky, G; Maarouf, A; Fiala, D; Staiger, H. 2002, An Update on the Development of a Universal Thermal Climate Index, 15th Conference on Biometeorology/Aerobiology and 16th International Congress of Biometeorology.
  22. KATS, 2010, Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, KS A ISO 7730, Korean Standards Information Center.
  23. Kim, J. W; Lee, D. K; Oh, K. S; Seong, H. C. 2003, A Fundamental Study on the Relationship Between Riparian Vegetation and Surface Temperature : Focused on Cheonggaecheon Stream Restoration, The Journal of the Korea Society of Environmental Restoration, 6(3): 79-86.
  24. Kim, S. B; Um, H. H; Kwon, B. H; Oh, S. N; Kim, Y. H. 2004, Examination of Heat Budget Model for Urban Thermal Environment Evaluation, Asia-Pacific Journal of Atmospheric Sciences, 40(2):147-158.
  25. Kim, J. S. 2005, Environmental Engineering in Architecture, Publisher of SeoWoo.
  26. Kim, S. Y; Kim, H. B. 2010, A Study on the Improvement of Korea Green Building Certification System by the Comparison with BREEAM and LEED, The Journal of Architectural institute of Korea, 26(12):271-278.
  27. Kim, K. J; Yeo, I. A; Yoon, S. H. 2011, The Study on the Characteristics of the Formation of Urban Thermal Environment According to Greening Type, The Journal of Architectural Institute of Korea, 27(6):229-236.
  28. Latini, G; Grifoni, R. C; Tascini, S. 2010, Thermal Comfort and Microclimates in Open Spaces, ASHRAE.
  29. Lane, R. E. 1994, Quality of Life and Quality of persons: A New Role for Well-being Measure, Political Theory, 22(2):219-252. https://doi.org/10.1177/0090591794022002002
  30. Lee, W. S; Jeong, S. K; Park, K. H; Kim, K. T. 2010, Analysis of Urban Thermal Environment for Environment-Friendly Spatial Plan, The Journal of Korean Association of GIS, 13(1):142-154.
  31. Lee, J. A; Jeong, D. Y; Jeon, J. H; Lee, S. M; Song, Y. B. 2010, An Evaluation of Human Thermal Comfort and Improvement of Thermal Environment by Spatial Structure, The Journal of the Korean Institute of Landscape Architecture, 38(5):12-20.
  32. Lim, H. S. 1996, A Conceptual Discussion of a Quality of Life, The Journal of Korea Institute of Public Administration, 5(1):5-18.
  33. Matzarakis, A; Mayer, H; Iziomon, M. 1999, Applications of a Universal Thermal Index: Physiological Equivalent Temperature, International Journal of Biometeorology, 43(2):76-84. https://doi.org/10.1007/s004840050119
  34. Matzarakis, A; Mayer, H. 2000, Atmospheric Conditions and Human Thermal Comfort in Urban Areas, 11th Seminar on Environment Protection; Environment and Health, 155-166.
  35. Matzarakis, A; Rutz, F; Mayer, H. 2007, Modelling Radiation Fluxes in Simple and Complex Environments: Application of the RayMan model, International Journal of Biometeorology, 51(4):323-334. https://doi.org/10.1007/s00484-006-0061-8
  36. Matzarakis, A; Amelung, B. 2008, Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans, Climatic Change and Human Health, 161-172.
  37. Mayer, H. 1993, Urban Bioclimatology, Experientia 49; Birkhauser Verlag, Switzerland, 957-963.
  38. Memon, R. A; Leung, D. Y. C; Liu, C. H. 2008, A Review on the Generation, Determination and Mitigation of Urban Heat Island, Journal of Environmental Sciences, 20(1):120-128. https://doi.org/10.1016/S1001-0742(08)60019-4
  39. Milne, M; Givoni, B. 1985, Energy Conservation through Building Design, Chap 6: Architectural Design Based on Climate, McGraw-Hill
  40. Oh, K. S; Hong, J. J. 2005, The Relationship between Urban Spatial Elements and the Urban Heat Island Effect, The Journal of Urban Design Institute of Korea, 6(1):47-63.
  41. Olesen, B .W; Parsons, K. C. 2002, Introduction to Thermal Comfort standards and to the Proposed New Version of EN ISO 7730, Energy and Building, 34(6):537-548. https://doi.org/10.1016/S0378-7788(02)00004-X
  42. Olgay, V. 1963, Design with Climate: Bioclimatic Approach to Architectural Regionalism, Princeton University Press.
  43. Saaroni, H.; Ben-Dor, E; Bitan, A; Potchter, O. 2000, Spatial Distribution and Microscale Characteristics of the Urban Heat Island in Tel-Aviv, Israel, Landscape and Urban Planning, 48(1-2):1-18. https://doi.org/10.1016/S0169-2046(99)00075-4
  44. Sagong, H. S. 2003, An Empirical Study on Analysis Method of Impervious Surface Using IKONOS Image, The Journal of GIS Association of Korea, 11(4):509-518.
  45. Shashua-Bar, L; Hoffman, M. E. 2000, Vegetation as a Climatic Component in the Design of an Urban Street: An Empirical Model for Predicting the Cooling Effect of Urban Green Areas with Trees, Energy and Buildings, 31(3):221-235. https://doi.org/10.1016/S0378-7788(99)00018-3
  46. Song, Y. B. 2002, Influence of New Town Development on the Urban Heat Islands: in the case of Pan-Gyo Area and Bun-Dang New Town, The Journal of the Korean Institute of Landscape Architecture, 30(4):37-46.
  47. Song, S. Y. 2004, Development and Application of Passive Climatic Design Tool Using Building Bioclimatic Chart for Energy Efficient Building, The Journal of Korea Institute of Architecture and Environment, 4(3):153-160.
  48. Song, B. K; Park, K. H. 2010, An Analysis of Cold Air Generation Area Considering Climate Ecological Function: A Case Study of Changwon, South Korea, The Journal of Korean Association of Geographic Information Studies, 13(1):114-127.
  49. Song, D. S; Lim, J. Y. 2009, A Study of Thermal Comfort Assessment Index on Outdoor Environment, The Journal of the Korea Green Building Council, 10(4):26-32.
  50. Taha, H. 2008, Meso-urban Meteorological and Photo Chemical Modeling of Heat Island Mitigation, Atmospheric Environment, 42(38): 8795-8809. https://doi.org/10.1016/j.atmosenv.2008.06.036
  51. Voogt, J. A; Oke, T. R. 2003, Thermal Remote Sensing of Urban Climates, Remote Sensing of Environment, 86(3):370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
  52. Watson, D; Labs, K. 1983, Climatic Design: Energy Efficient Building Principles and Practices, McGraw-Hill.
  53. Yoon, M. H; Ahn, D. M. 2009, An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature, The Journal of the Korean Institute of Landscape Architecture, 37(3):46-53.
  54. Yoon, Y. H; Ju, C. H; Kim, J. H. 2011, Improvement of Environmental Comport by Land-use using Bioclimatic Chart, The Journal of the Korean Regional Development Association, 23(3):39-58.
  55. Yu, C; Hien, W. N. 2006, Thermal Benefit of City Parks, Energy and Buildings, 38(2): 105-120. https://doi.org/10.1016/j.enbuild.2005.04.003
  56. www.goyang.go.kr/3gu/w_gu
  57. www.goyang.go.kr/3gu/s_gu
  58. www.bundang-gu.or.kr
  59. http://www.hscity.net
  60. www.nso.go.kr
  61. www.lh.or.kr
  62. USGS, http://pubs.er.usgs.gov

Cited by

  1. 영남지역의 토지피복에 따른 열쾌적성평가도 구축 vol.17, pp.2, 2014, https://doi.org/10.11108/kagis.2014.17.2.136
  2. Possibility of Urban Heat Island Formation by Lifting Green Belts: Focusing on the Cases of Busan Metropolitan City, Korea vol.21, pp.5, 2013, https://doi.org/10.9798/kosham.2021.21.5.69