DOI QR코드

DOI QR Code

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System

지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발

  • 신호성 (울산대학교 건설환경공학부) ;
  • 이승래 (한국과학기술원 건설및환경공학과)
  • Received : 2013.07.03
  • Accepted : 2013.07.30
  • Published : 2013.08.31

Abstract

Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

지중 열교환 시스템은 지속적인 에너지 효율의 개선으로 공간 냉난방을 위한 친환경적 에너지 기술로 주목받고 있다. 지중에 매설된 파이프는 내부 유체 순환을 통하여 인접한 지반과 열적 상호작용으로부터 직접적인 열에너지 교환을 수행한다. 하지만, 파이프의 수치모델링에서 열-수리가 연관된 난류해석과 파이프의 긴 세장비에 의한 메쉬사이즈의 부적합성은 열교환 시스템의 적절한 수치해석을 어렵게 하고 있다. 본 논문에서는 파이프 내부 유체흐름에 대한 에너지 보존의 법칙을 적용하여 지배방정식을 유도하였으며, Galerkin수식화와 시간적분을 통하여 열-수리 연동일차원 파이프 요소를 개발하였다. 그리고 제안된 파이프 요소를 기 개발된 다공질 재료를 위한 열-수리-역학(Thermo-Hydro-Mechanical) 해석을 위한 유한요소 프로그램과 결합하였다. 개발된 요소를 이용한 수치해석 결과는 열응답 시험(Thermal Response Test) 결과로부터 주위지반의 유효 열전도도를 평가하기 위하여 사용하는 선형 열원 모델이 인접 파이프간의 열적상호작용과 파이프의 단부효과에 의하여 지반의 열전도도를 과다 평가하는 것으로 보여주었다. 따라서 열응답 시험 해석 결과에 대한 역해석을 적용하여 최적의 수렴성을 보여주는 변환행렬을 제시하였다.

Keywords

References

  1. Al-Khoury, R. and Bonnier, P.G. (2006), "Efficient finite element formulation for geothermal heatingsystems. Part II : transient", International Journal for Numerical Methods in Engineering, 67, 725-745. https://doi.org/10.1002/nme.1662
  2. Carslaw, H. S. and Jaeger, J. C. (1959), "Conduction of heat in Solid", Oxford Science Publications, 261-262.
  3. Cengel, Y. A. and Ghajar, A. J. (2012), Heat and Mass Transfer - Fundamentals and Applications, McGraw-Hill, New York, NY.
  4. Choi, J.C. (2011), Numerical simulation on the performance of energy pile considering effect of unsaturated soil condition, Doctoral Dissertation, KAIST.
  5. Diersch, H.G., Bauer, D., Heidemann, W., Ruhaak, W., and Schatzl, P. (2011), "Finite element modeling of borehole heat exchanger systems: Part 1. Fundamentals", Computers & Geosciences, 1122-1135.
  6. Idelsohn, S.R., Heinrich, J.C., and Onate, E. (1996), "Petrov-Galerkin methods for the transient advective-diffusive equation with sharp gradients", Int. J. Num. Meth. Eng., 39, 1455-73. https://doi.org/10.1002/(SICI)1097-0207(19960515)39:9<1455::AID-NME912>3.0.CO;2-0
  7. Lee, D.S., Min, H.S., Lim, H.S., and Jeong, S.S. (2013), "Numerical analysis of thermal effect on axial load and pile settlements in PHC energy piles", Journal of the Korean Geotechnical Society, 29(5), 5-17. https://doi.org/10.7843/kgs.2013.29.5.5
  8. Marcotte, D. and Pasquier, P. (2008), "Fast fluid and ground temperature computation for geothermal ground-loop heat exchanger systems", Geothermics, 37, 651-665. https://doi.org/10.1016/j.geothermics.2008.08.003
  9. Park, M., Lee, C., Park, S., Sohn, B., and Choi, H. (2012), "Evaluation of Ground Thermal Conductivity by Performing In-Situ Thermal Response test (TRT) and CFD Back-Analysis", Journal of the Korean Geotechnical Society, 28(12), 5-15. https://doi.org/10.7843/kgs.2012.28.12.5
  10. Santamarina, C. J. and Dante, F. (2005), Discrete Signals and Inverse Problems: An Introduction for Engineers and Scientists, John Wiley & Sons Ltd.
  11. Schiavi, L. (2009), "3D simulation of the thermal response test in a U-tube borehole heat exchanger", Proceedings of the COMSOL Conference.
  12. Shin, H. (2011), "Formulation of fully coupled THM behavior in unsaturated soil", Journal of Korean Geotechnical Society, 27(3), 75-83. https://doi.org/10.7843/kgs.2011.27.3.075
  13. Yavuzturk, C., Spitler, J., and Rees, S. (1999), "A transient twodimensional finite volume model for the simulation of vertical u-tube ground heat exchangers", ASHRAE Transactions, 105(2), 465-474.
  14. Wilcox, D.C. (2006), Turbulence Modeling for CFD, 3rd ed., DCW Industries.
  15. Woo, S.W., Kim, J.H., Shin, S.H., and Hwang, K.I. (2007), "The Comparison of the EWT and LWT between Field Measurement and CFD of Vertical-type Geothermal Heat Exchanger", Journal of Korea Society of Geothermal Energy Engineers, 3(1), 11-16.