• Title/Summary/Keyword: groundwater mixing

Search Result 171, Processing Time 0.029 seconds

Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine (폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용)

  • Hwang Jung-Sung;Choi Sang-il;Han Sang-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Several tests were conducted to determine the optimum operational conditions of soil washing techniques for floe-forming arsenic-contaminated soils, collected from D abandoned Iron-mine in Korea. The optimum cut-off size was 0.15 mm $(sieve\;\#100)$, about $94\%$ of the mass of soils. Both sodium hydroxide and hydrochloric acid were effective to remove arsenic and the optimum mixing ratio (soil [g] : washing solution [mL]) was 1:5 for both washing agents. Arsenic concentrations, determined by KST Methods, for the dried floe solids obtained from flocculation at pH 5-6 were $990\~1,086\;mg/kg$ dry solids, which were higher concentrations than at the other pH values. Therefore, batch tests for sequential washings with or without removing floc were conducted to find the enhancement of washing efficiencies. After removing floe with 0.2 M HCl, sequential washings of 1 M HCl followed by 1 M NaOH showed the best results (15 mg/kg dry soil). The arsenic concentrations of washing effluent from each washing step were about $2\~3\;mg/L$. However, when these acidic and basic effluents were mixed together, arsenic concentration was decreased to be less than $50\;{\mu}g/L$, due to the pH condition of coagulation followed by precipitation for arsenic removal.

Comparative Analysis on Resources Characteristics of Deep Ocean Water and Brine Groundwater (해양심층수와 지하염수 자원의 특성)

  • Moon D.S.;Jung D.H.;Kim H.J.;Shin P.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2004
  • Deep Ocean Water (DOW) is formed within restricted area including polar sea (high latitude) by cooling of surface seawater and globally circulating in the state of isolation from surface seawater. Although it is not as obvious as estuaries mixing, brine ground water is mixture of recirculated seawater and ground water. Seawater having high osmotic pressure infiltrates into an aquifer which is connected to the sea. In order to clarify the characteristics of deep ocean water and brine ground water, we investigated their origins, chemical compositions, water qualities and resources stabilities. While concentrations of stable isotopes (/sup 18/O and ²H) in seawater is 0‰, those in brine ground water is on meteoric water line or shifted toward oxygen line. It means that origin of brine ground water is different than that of deep ocean water. The ions dissolved in seawater (Na, Ca, Mg, K) are present in constant proportions to each other and to the total salt content of seawater. However deviations in ion proportions have been observed in some brine ground water. Some causes of these exception to the rule of constant proportions are due to many chemical reactions between periphery soil and ground water. While DOW has a large quantity of functional trace metals and biological affinity relative to brine ground water, DOW has relatively small amount of harmful bacteria and artificial pollutants.

  • PDF

Reclamation of the Closed/Abandoned Coal Mine Overburden Using Lime wastes from Soda Ash Production (부산석회를 활용한 휴ㆍ폐 석탄광산 폐기물의 안정화 및 식생복원)

  • 김휘중;양재의;옥용식;유경열;박병길;이재영;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.37-47
    • /
    • 2004
  • In Korea, over three hundreds of the coal mines were closed or abandoned due to the depression of the mining industry since the late 1980s. Many of them locate in the steep mountain valleys and the coal mine wastes had been disposed without a proper treatment From these mines, enormous amounts of coal mine overburdens have been abandoned in the slopes and the ample amounts of acid mine drainage (AMD) from either portal or overburdens have been discharging directly to the streams, causing the detrimental effects on soil and water qualities. Objectives of this research were to reclaim the coal mine overburdens using the lime waste cake from the soda ash production by stabilizing the overburden slopes, introducing the vegetation alleviate the environmental problems caused by the closed coal mines. The percentages of the grass distribution ratio (%) and the surface coverage ($\textrm{cm}^2$) in each treatment plot were determined during June to August after seed spraying grasses such as orchard grass (Dactylis glomerata L), Kentucky Bluegrass (Poa pratensis L.) and Eulalia (Miscanthus sinensis Anderss) at the end of May. The grasses covered only 15.5 % of the coal overburden plot at the early stage but the coverage was increased with time to 33% in August. Growth of such grasses was enhanced with the combined treatments of lime waste and topsoil resulting in the increased surface coverage by the grasses. The Increment of the surface coverage from June to August was higher with lime waste treatments. The distribution percentages and surface coverage were highest when the lime wastes were treated at 25 % of the lime requirement. This might be related with the high salt contents in the hire wastes. Results demonstrated that the amounts of lime wastes at 25% of the lime requirement were sufficient for neutralizing the acidic coal overburden and introducing the re-vegetation. Either layering between the coal waste and topsoil or mixing with coal overburdens could be adopted as the lime waste treatment method. The combined treatment of lime wastes and topsoil was recommended for re-vegetation in the coal overburden slopes. The lime wastes from the soda ash production might have a potential to be recycled for the reclamation of the abandoned coal mines to alleviate the environmental problems associated with coal mine waste.

  • PDF

Comparative Study of Tritium Analysis Method with High-Volume Counting Vial

  • Yoon, Yoon Yeol;Kim, Yongcheol
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.142-146
    • /
    • 2020
  • Background: Tritium (3H) analysis in groundwater was difficult because of its low activity. Therefore, the electrolytic enrichment method was used. To improve the detection limit and for performing simple analysis, a high-volume counting vial with the available liquid scintillation counter (LSC) was investigated. Further, it was compared with a conventional 20-mL counting vial. Materials and Methods: The LSC with the electrolytic enrichment method was used 3H analysis in groundwater. A high-volume 145-mL counting vial was compared with a conventional 20-mL counting vial to determine the counting characteristics of different LSCs. Results and Discussion: When a Quantulus LSC was used, the counting window between channels 35 and 250 was used. The background count was approximately 1.86 cpm, and the counting efficiency increased from 8% to 40% depending on the mixing ratio of the volume of sample and cocktail solution. For LSC-LB7, the optimum counting window was between 1 and 4.9 keV, which was selected by the factory (Hitachi Aloka Medical Ltd., Japan) by considering quenching using a standard external gamma source. The background count of LSC-LB7 was approximately 3.60 ± 0.29 cpm when the 145-mL vial was used and 2.22 ± 0.17 cpm when the 20-mL vial was used. The minimum detectable activity (MDA) of the 20-mL vial was greater for LSC-LB7 than for Quantulus. The MDA with the 145-mL vial was improved to 0.3 Bq/L when compared with the value of 1.6 Bq/L for the 20-mL vial. Conclusion: The counting efficiency when using the 145-mL vial was 27%, whereas it was 18% when using the 20-mL vial. This difference can be attributed to the vial volume. The figure of merit (FOM) of the 145-mL vial was four times greater than that of the 20-mL vial because the volume of the former vial is approximately seven times greater than that of the latter. Further, the MDA for 3H decreased from 1.6 to 0.3 Bq/L. The counting efficiency and FOM of LSC-LB7 was slightly less than those of Quantulus when the 20-mL vial was used. The background counting rate of the Quantulus was lower than that of the LSC-LB7.

Properties of Permeable Block using Artificial Permeable Pipe and Polymer Powder VAE to Improve Permeability (투수성을 개선시키기 위해 인공투수관 및 분말형 폴리머 VAE를 사용한 투수블록의 특성)

  • Yoo, Beong-Young;Lee, Won-Gyu;Pyeon, Su-Jeong;Kim, Dea-Yeon;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.447-453
    • /
    • 2018
  • Since 1960, Korea the town center was developed intensively due to rapid industrial development. As a result of the development, the population was concentrated in urban areas and the green area was decreased. Due to the decrease of the green area, the circulation system of the rainwater was changed, hence the rainwater was not introduced into the groundwater., On the other hand, the water on the surface of the road was changed into the water for flowing to the river and evaporation. The changes in the water flow cause many problems, and the depletion of the groundwater does not create an environment in which microorganisms and plants can live. in Korea, permeable pavement construction is increased to solve these problems, but existing pavement blocks have many problems. The pores of the permeable block are clogged due to the accumulation of dust or whitening phenomenon, and the permeability is lost. In this study, the solution of the problems of existing permeable block were suggested by using polymer and artificial permeable pipe, and strength, permeability and service life are increased, The relationship between the substitution rate of the polymer and the mixing ratio of the artificial permeable pipe was analyzed.

Experiment of Reactive Media Selection for the Permeable Reactive Barrier Treating Groundwater contaminated by Acid Mine Drainage (산성광산배수로 오염된 지하수 정화용 투수성 반응벽체 반응매질 선정 기초실험)

  • Ji Sang Woo;Cheong Young Wook
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.237-245
    • /
    • 2005
  • The batch tests were performed to evaluate the applicability of the permeable reactive barrier (PRB) to in-situ treatment of groundwater with high concentration of heavy metals. The lead\chates used in this study were collected from waste rock dump of the Imgy mine, and have a low pH and high metal concentration. The acidity loading was 65kg as $CaCO_3/day$, metal loading of Fe+Al+Mn was 11.6kg/day. This type of water could be treated with biological-mediated sulfate reduction using the organic carbon mixture as a reactive media. The batch tests were carried out with five mixtures that were composed with different mixing ratios of mushroom compost, pine-tree bark, and limestone cheep. Results indicated that the PRB could reduce the acidity loading $CaCO_3/day$ to 12.3kg and reduce the metal loading to 3.3kg/day. Considering about the low pH and high metal loading, the contaminated water may be ameliorated by passing it through the buffering PRB composed with inorganic carbonate materials and then through the PRB composed with the organic carbon mixture which can induce sulfate reduction.

A Study on the Basic Characteristics of In-situ Soil Flushing Using Surfactant (계면활성제를 이용한 원위치 토양세정 기법 적용을 위한 기초 특성 연구)

  • 최상일;소정현;조장환
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.87-91
    • /
    • 2002
  • Lab scale batch and column tests were performed to investigate the treatability of petroleum contaminated soil using the in-situ soil flushing method. The pyrex column (4.5$\times$25 cm) was used to investigate optimal washing agent, surfactant concentration, mixing ratio, and inlet velocity. The miked surfactant of $POE_{14}$ and SDS were determined as ideal systems for the batch tests. From the results of preliminary tests, mixed surfactant was found to be more harmful for microorganisms. So $POE_{5}$ and $POE_{14}$ were chosen as the surfactant system for the batch study. The washing efficiency for the diesel contaminated soil was increased until 1 %, and decreased after l %. When applied as selected mixed surfactant, the ideal mixed ratio was recognized as 1:1. Therefore we selected miked surfactant $POE_{5}$ and $POE_{14}$, surfactant concentration 1%, and mixed ratio 1:1 for the remediation of diesel contaminated soil. In column tests, the total removal efficiency was improved as the flux of washing agent was increased. At the same pore volume, small flux showed better removal efficiency.

Feasibility Study on the Applicability of Fly Ash as a Barrier Material in Containment System

  • Myung Dong-Il;Lee Gwang-Hun;Lee Seung-Hak;Park Jun-Boum;Kim Hyung-Suk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.202-210
    • /
    • 2005
  • In this study, the fly ash was employed as a possible alternative to the bentonite for its high sorption capacity against cationic heavy metal. To consider the constituents of barrier possibly used, the specimens were mixed with different material contents (fly ash : weathered soil : bentonite), then sorption test was performed. Also the specimens were molded on the wet side of optimum moisture contents like mixing ratio of sorption test and their hydraulic conductivities were measured in flexible-wall permeameters. And to confirm the effect of dissolved cations, the hydraulic conductivity tests were repeated by converting the permeant liquids from water to $Cd^{2+}$ solution. Finally, the Cd-concentration at the effluent was analyzed for 500hrs to compare the effectiveness of each specimen in contaminant retardation. Test results showed that the more the ratio of fly ash increase, the more Kd value increase, and the hydraulic conductivity of weathered soil/bentonite (95:5) mixture was the lowest $(2.9*10^{-8}cm/sec)$, and specimens made of fly ash and fly ash/weathered soil mixtures showed similar hydraulic conductivity. Although the permeant liquid was changed from water to $Cd^{2+}$ solution, the hydraulic conductivity of all specimens except for weathered soil maintained similarly like before. Consequently, the initial breakthrough point of Cd in weathered soil specimen was observed at about 5hrs after the test started while that of fly ash specimens was not observed during the whole test period of 500hrs. The results implied that fly ash had a sufficient retardation capacity against contaminant transport possibly by its high sorption capacity although it showed little effect on the reduction of hydraulic conductivity. Based on the test results, it could be concluded that the fly ash can be possibly used as a suitable barrier material in containment system to attenuate the contaminant transport for its high retardation capacity and for the low cost.

  • PDF

Experimental Study on Influence of Ground Collapse due to Ground Water Level Lowering (지하수위 저하가 지반함몰에 미치는 영향에 관한 실험적 연구)

  • Kim, Sukja;Jung, Kwansue
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.11
    • /
    • pp.23-30
    • /
    • 2018
  • According to recent ground collapse occurrence, ground subsidence is increasing every year in downtown area, which is a social problem. The purpose of this study is to investigate the relationship between ground water level lowering and ground collapse through laboratory model experiments. After mixing 1:1 granite weathered soil with sand, sandy soil was formed as a relative density of 30%, 50%, and 80%. And then the changes of soil discharge with change of groundwater level were compared. The physical property of material of which particle distribution were well graded with maximu dry unit weight of $1.94kg/cm^3$ and internal friction angle of 37degrees. Ground water levels were measured at 10 cm, 20 cm, and 30 cm from the bottom. As a result, the experiment shows that the higher the groundwater level works the higher the discharge velocity and the magnitude of underground cavity also increases with elapsed time. Finally, the cumulative quantity of soil discharge occurred up to 30 kg at the elapsed time, 35 minutes. It was also confirmed that the range of ground collapse increased due to soil discharge with ground water level lowering.

Effects of Additives on Soil Washing Efficiency for Mixed Surfactants (혼합 계면활성제에 적용된 각종 첨가제가 토양세척 효율에 미치는 영향)

  • Choi, Sang-Il;Jang, Min;Hwang, Kyung-Yub;Ryoo, Doo-Hyun
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.65-74
    • /
    • 1998
  • To enhance the washing efficiency of soil polluted by hydrophobic organic compounds, the effects of electrolytes and monomeric organic additives on micelle formation and washing efficiency of mixed surfactant solutions were investigated in this study. The surface tensions and critical micelle concentrations(CMCs) of the single and mixed surfactant solutions[$POE_5$/SDS] supplemented by NaCl were measured to investigate the effects on washing efficiency, and the composition ratios of surfactants and NaCl were optimized for the efficient soil washing system. As the mixing ratio of $POE_5$/SDS was increased to 80%, the mixed surfactant with 0.01M NaCl showed more proportional increase of washing efficiency than the mixed surfactant without any salts. The 3% solution of $POE_5$ and SDS(80%/2o%) with 0.01M NaCl showed the washing efficiency of 90%. However, the washing efficiency was not enhanced by NaCl addition to the single surfactant solution of $POE_5$. The CMC of SDS(0.049%) was higher than that of $POE_5$(0.016%), but the CMCs of mixed surfactants were decreased as the mixing ratio of $POE_5$ was increased. Alcohols having longer chain and branched carbon chain were found to be desirable for the soil washing additives.

  • PDF