Experiment of Reactive Media Selection for the Permeable Reactive Barrier Treating Groundwater contaminated by Acid Mine Drainage

산성광산배수로 오염된 지하수 정화용 투수성 반응벽체 반응매질 선정 기초실험

  • Ji Sang Woo (Dept. of Geotechnical & Environmental Hazards Division, KIGAM) ;
  • Cheong Young Wook (Dept. of Geotechnical & Environmental Hazards Division, KIGAM)
  • 지상우 (한국지질자원연구원 지질환경재해연구부) ;
  • 정영욱 (한국지질자원연구원 지질환경재해연구부)
  • Published : 2005.06.01

Abstract

The batch tests were performed to evaluate the applicability of the permeable reactive barrier (PRB) to in-situ treatment of groundwater with high concentration of heavy metals. The lead\chates used in this study were collected from waste rock dump of the Imgy mine, and have a low pH and high metal concentration. The acidity loading was 65kg as $CaCO_3/day$, metal loading of Fe+Al+Mn was 11.6kg/day. This type of water could be treated with biological-mediated sulfate reduction using the organic carbon mixture as a reactive media. The batch tests were carried out with five mixtures that were composed with different mixing ratios of mushroom compost, pine-tree bark, and limestone cheep. Results indicated that the PRB could reduce the acidity loading $CaCO_3/day$ to 12.3kg and reduce the metal loading to 3.3kg/day. Considering about the low pH and high metal loading, the contaminated water may be ameliorated by passing it through the buffering PRB composed with inorganic carbonate materials and then through the PRB composed with the organic carbon mixture which can induce sulfate reduction.

중금속으로 오염된 산성 지하수의 현장 정화방법으로 투수성반응벽체 기술의 적용 가능성을 평가하기 위하여 반응매질 선정을 위한 실내실험을 수행하였다. 처리대상 오염지하수로 이용한 임기광산 폐석적치장 침출수는 낮은 pH와 높은 금속농도를 갖는다(산도부하량으로 65 kg $CaCO_3$/일, 금속부하량(Fe+Al+Mn)으로 11.6kg/일). 이러한 특성의 오염지하수는 반응매질로 유기탄소 혼합물을 이용하여 황산염환원 반응에 의한 처리가 가능할 것으로 판단된다. 다섯 가지 서로 다른 배합비를 갖는 버섯퇴비, 소나무 바크, 석회석의 혼합 반응매질을 이용한 배치실험 결과를 통해 보면 투수성반응벽체를 적용할 경우 산도부하량은 12.3kg $CaCO_3$/일, 금속부하량은 3.3kg/일로 줄일 수 있다. 대상 지하수의 낮은 pH와 높은 금속부하량을 고려하여 무기탄소를 위주로 한 완충용 반응벽체를 먼저 두고, 이어서 유기탄소 혼합물로 구성되는 반응벽체로 황산염 환원을 유도하는 방법 적용한다면 보다 효과적인 광산배수에 대한 정화를 기대할 수 있을 것이다.

Keywords

References

  1. 김주용 (1998) 산성광산배수에 의한 강릉탄전 임곡천 일대의 수계오염과 처리에 관한 연구. 서울대학교 공학박사학위논문, 204p
  2. 민정식, 권광수, 조원재, 홍영국, 홍성규, 정영욱 (1995) 폐광에 따른 광산지역 환경개선 연구(폐수, 폐석). 석탄합리화사업단 기술총서 95-02, 268p
  3. 석성버섯마을 (2004) http://seokseong.invil.org/theme/ mushroom_growing/yangsonge
  4. 정영욱, 민정식, 이현주, 권광수 (1997) 볏짚 및 우분을 이용한 산성광산배수 정화. 한국지하수환경회지, v. 4권, pp. 116-121
  5. 지상우 (2004) 국내 산성광산배수 자연정화시설의 분석과 갱내황산염 환원시설 모형실험 연구. 한양대학교 박사학위 논문, 154p
  6. 황지호 (1998) 도계탄광 부근 산성광산배수의 환경지구화학적 특성과 처리에 대한 연구. 서울대학교 공학박사학위논문, 103p
  7. Brown, M., Barley, B., and Wood, Harvey (2002) Minewater Treatment - Technology, Application and Policy. IWA publishing, 453p
  8. Bolis, J., Wildeman, T.R. and Cohen, R.R., 1991, The use of bench scale parameters for preliminary metal removal from acid mine drainage by wetlands. Proceedings of American Societ for Surface Mining and Reclamation, Princeton, WV, USA, pp. 123-136
  9. Drever, J.J., 1998, The Gechemistry of natural Waters, 2nd edition. Prentice Hall, 437p
  10. Elliott, P., Ragusa, S. and Catcheside, D., 1998, Growth of sulfate-reducing bacteria under acidic conditions in an uplow anaerobic bioreactor as a treatment system for acid mine drainage. Wat. Res., v. 32, pp. 3724-3730 https://doi.org/10.1016/S0043-1354(98)00144-4
  11. Garcia, C., Moreno, D.A., Ballester, A., Blazquez, M.L. and Gonzalez, F., 2001, Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Minerals Engineering, v. 14, pp. 997-1008 https://doi.org/10.1016/S0892-6875(01)00107-8
  12. Gusek, J.J. and Wildeman, T.R. (2002) Passive treatment of aluminum-bearing acid rock drainage. Proceedings of the 23rd Annual West Virginia Surface Mine Drainage Task Force Symposium, Morgantown, WV, USA, 9p
  13. Gusek, J.J. (2002) Sulfate-reducing bioreactor design and operating issues: Is this the passive treatment technology for your mine drainage?. 2002 NAAMLP Annual Conference, 14p
  14. Hedin R.S., Watzlaf G.R. and Nairn R.W. (1994a) Passive treatment of acid mine drainage with limestone. J. Environ. Qual. v. 23, p. 1338-1345 https://doi.org/10.2134/jeq1994.00472425002300060030x
  15. Hedin, R.S., Nairn, R.W and Kleinmann, R.L.P. (1994b) Passive treatment of coal mine drainage. US Bureau of Mines IC9389, 35p
  16. Kepler, D.A. and McCleary, E.C. (1994) Successive alkalinity- producing systems (SAPS) for the treatment of acidic mine drainage. p. 195-204. In: Proceedings, Intenational Land Reclamation and Mine Drainage Conference, April 24-29, 1994, USDI, Bureau of Mines SP 06A-94. Pittsburgh, PA
  17. Kleinmann, R.L.P. and Hedin, R.S. (1993) Treat mine water using passive methods. Pollution Engneering, pp. 20-22
  18. Kolmert, A. and Johnson, D.B., 2001, Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J. Chem. Technol. Biotechnol., v. 76, pp. 836-843 https://doi.org/10.1002/jctb.453
  19. Lyew, D., Knowles, R. and Sheppard, J., 1994, The biological treatment of acid mine drainage under continuous flow conditions in a reactor. Trans IChemE, v. 72, PartB, pp. 42-47
  20. Postgate J. R. (1984) The sulphate-reducing bacteria, 2nd dition. Cambridge Univ. Press, NY, 208p
  21. Sengupta, M. (1993) Environmental impacts of mining: monitoring, restoration and control. Lewis publishers, 494p
  22. USEPA (1998) Permeable Reactive Barrier Technologies for Contaminant Remediation. EPA/600-R-98-125, 94p
  23. USEPA (1999) Field applications of in situ remediation Technologies: Permeable Reactive Barriers. EPA/ 542-R-99-002, 114p
  24. Younger, P.L., Banwart, S.A, and Hedin, R.S. (2002) Mine Water-Hydrology, Pollution, Remediation. Kluwer academic publishers, 442p