A Study on the Basic Characteristics of In-situ Soil Flushing Using Surfactant

Sang-il Choi* · Jung-hyun So · Chang-hwan Cho
Department of Environmental Engineering, Kwangwoon University

ABSTRACT

Lab scale batch and column tests were performed to investigate the treatability of petroleum contaminated soil using the in-situ soil flushing method. The pyrex column (4.5×25 cm) was used to investigate optimal washing agent, surfactant concentration, mixing ratio, and inlet velocity. The mixed surfactant of POE₁₄ and SDS were determined as ideal systems for the batch tests. From the results of preliminary tests, mixed surfactant was found to be more harmful for microorganisms. So POE₃ and POE₁₄ were chosen as the surfactant system for the batch study. The washing efficiency for the diesel contaminated soil was increased until 1%, and decreased after 1%. When applied as selected mixed surfactant, the ideal mixed ratio was recognized as 1:1. Therefore we selected mixed surfactant POE₃ and POE₁₄ surfactant concentration 1%, and mixed ratio 1:1 for the remediation of diesel contaminated soil. In column tests, the total removal efficiency was improved as the flux of washing agent was increased. At the same pore volume, small flux showed better removal efficiency.

Key words: In-situ soil flushing, remediation, petroleum contaminated soil, TPH (total petroleum hydrocarbon), surfactant

요 약 문

유류로 오염된 부지에 토양세정기법을 적용하기 위하여 실험실 규모의 컬럼실험을 통하여 pilot 규모 현장 적용을 위한 설계인자 및 최적 운전조건을 규명하고자 적정 세척제 종류와 농도, 배합비 및 세정용액 주입유량을 고찰하였다. 원시실험 결과 POE₃와 SDS(1:1)를 1%로 적용한 혼합세척물성제의 효율이 가장 우수하였다. 그러나 예비실험 결과, 음이온계 제연활성화인 SDS는 생분해성 저해 경향이 다소 있는 것으로 나타나 같은 농도에서 효율이 거의 유사 하며, 생분해능이 우수한 POE₃와 POE₁₄ 혼합세척활성제를 이용하여 실험하였다. 산성산 혼합세척활성제를 적용하여 디젤 오염토양 세척능력을에 대하여 검토한 결과 세척제 농도 1%까지는 효율이 증가하다가 1% 이상의 농도에서는 다시 감소하는 경향을 나타내었다. 또한, 혼합활성제 배합비를 1:1로 혼합하였을 경우 세척효율이 가장 우수하였다. 따라서 POE₃와 POE₁₄(1:1) 1% 혼합세척활성제를 세척제로 선정하였다. 컬럼실험 결과, 주입 flux가 높수록 세정 제거된 총 유류의 양이 증가하였으며, 같은 pore volume의 세정용액 통해서는 flux가 작수록 제거효율이 우수하였다.

주제어: 원위치 토양세정, 복원, 유류오염토양, TPH(total petroleum hydrocarbon), 계면활성제

*Corresponding author: sicho@daisy.kwangwon.ac.kr

87
1. 서 론

현재 국내외에는 12,472개소의 주유소 및 4,631개소의 석유류 저장 산업시설이 유류 관련 토양오염 유발사례로 관리되고 있다\(^{11}\). 설비의 노후화 및 취급 부주의 등으로 누출된 유류에 의한 토양 및 지하수 오염은 매우 심각한 환경 문제로 대두되었다. 우리나라는 산업화의 급격한 증가와 동시에 전국적 산업 폐기물(PCB), Polycyclic Aromatic Hydrocarbons(PAHs), Trichloroethylene (TCE) 등 난수해성 유독물질들에 의한 오염보다는 상대적으로 유류오염이 토양 및 지하수의 가장 일반적인 경우로 나타나고 있다. 대부분의 경우에 대한 복합 성분의 석유계 탄화수소로 구성되어 있고, 인체 및 도양생물에 해상한 성분들을 많이 함유하고 있기 때문에 이러한 오염토양에 대한 적절한 처리가 필요하다.

오염된 토양과 지하수를 정화하기 위하여 전통적으로 pump and treat 기법이 이용되어 왔지만 소수성 오염물질을 제거하는 데 한계를 나타내고 있다. 소수성 오염물질은 특성상 물에 잘 녹지 않기 때문에 오염물질을 지하수로 유해시켜 제거하는 pump and treat 기법 적용 시 처리 시간이 길고, 결과적으로 비용이 많이 소요되는 단점이 있어\(^{21}\). 이를 보완하기 위해 소수성 오염물질의 용해도를 높이는 방안으로 제한활성제를 이용한 오염토양 정화 기법에 대한 연구가 지속적으로 진행되어 왔다. 재료 활성제는 세척 용제가 되도록 표면에 잘 묻거나 잘 피씨게 하며, 이물질(물순물)을 제거 후 격리시키고 또한 이물질들 이 서로 묻치게 하여 세척 효과를 증대시키고 세척력의 안정화를 유지하는 역할을 한다.

토양세정기법(soil flushing)은 드나다 제한활성제 등과 같은 세정제를 사용하여 오염된 토양으로부터 오염물질의 이동현상을 가속화시키는 기술이다. Yoon(1993) 등의 연구에 의하면 비이온성 polyoxyethylene(POE) 계열 제한 활성제와 유기탄소 함량이 0.9~3.4%인 토양을 이용한 batch 실험에서 인위적으로 흡착된 PAH의 90% 이상을 계거할 수 있었다\(^{31}\). 또한 Abdul(1991) 등은 토양 칼륨을 5~20 g/L의 alcohol ethoxylate 계열 제한활성제 용액으로 공급하여 20배 순환시키고 55~85%의 PCB를 제거하였다\(^{41}\). Robert(1995)는 토양활동을 통하여 제한활성제가 tetrachloroethylene의 흡착을 증가시킨다고 보고하였다\(^{51}\).

이러한 결과에 근거하여 토양세정 기법은 소수성 오염물질의 유동화를 증가시키기 위한 유망한 기술로 주목받게 되었다.

본 연구에서는 유류로 오염된 부지에 토양세정기법을 적용하기 위하여 실험실 규모의 토양식습실 및 컬럼실험을 통하여 pilot 규모 현장 적용을 위한 설계인자 및 최적 운전조건을 규명하고자 전기적, 화학적, 생물학적 특성을 알아보고자 실-sama

2. 실험재료 및 방법

2.1. 사용토양

본 연구에 사용된 토양은 서울특별시 노원구 월계동 도로환경공사 지역에서 채취하였으며, 본 입공의 토양과 혼합물을 제거하기 위하여 채취된 토양 중 #4쇄(4.7mm)를 통과하는 토양을 Total Petroleum Hydrocarbon(THP) 기준 14,000~20,000 mg TPH/kg dry soil 병으로 인공오염 시켜 사용하였다. 대상 토양의 pH는 토양수영공정시험 법\(^{61}\)에 제시된 방법으로 측정한 결과 8.26였으며. 토양의 particle density는 2.83 g/cm\(^3\), bulk density는 1.33 g/cm\(^3\), 공극용량은 약 0.47이었다. 토양의 유기물 함유량은 600℃의 온도로 전기로 이용하여 측정하였는데, 양은 1.7만용량(Cation Exchange Capacity, CEC)은 USEPA Method 9080\(^{71}\)을 이용하여 측정한 결과, 4.24 meq/100 g of soil이었다. 대상 토양에 대한 물리적 특성을 Table 1에 요약하였다.

균일한 오염토양을 제공하기 위하여 LSA 다결정을 n-hexane에 용해시킨 후 외부혼합기를 이용하여 30일간 교반시켜 4℃에서 압입 보관하여 최소 4주 이상 경과된 토양만을 사용하여 실험하였다.

2.2. 토양식습실

Pilot 규모 현장 적용을 위한 설계인자 및 최적 운전조건은 규명하고자 채취자재, 세척용액의 농도, 세척용액의 배합비에 따른 세척효율을 각각 검토하였다.

2.2.1 세척용액 종류에 의한 영향

비이온성 제한활성제인 polyoxyethylene(POE) 계열의

<table>
<thead>
<tr>
<th>Table 1. The characteristics of the soil tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Organic Content [%]</td>
</tr>
<tr>
<td>Bulk Density [g/cm(^3)]</td>
</tr>
<tr>
<td>Particle Density [g/cm(^3)]</td>
</tr>
<tr>
<td>Porosity</td>
</tr>
<tr>
<td>CEC [meq/100 g]</td>
</tr>
<tr>
<td>Uniformity Coefficient</td>
</tr>
</tbody>
</table>
| Permeability [cm/sec] |}

Journal of KeSSGE Vol. 7, No. 4, pp. 87-91, 2002
POE와 POE₄ 및 용이온계 계면활성제인 sodium dodecyl sulfate(SDS)를 이용하여 1%의 단일 계면활성제 및 혼합 계면활성제를 제조하여 토양에 대한 세정효율을 관찰하였다.

2.2.2 세척용액 농도에 의한 영향
세척제의 농도를 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0%로 변화시켜 가시세정효율을 관찰하였다.

2.2.3 세척용액 배합비에 의한 영향
혼합 계면활성제 적용 시 최적 배합비를 결정하기 위하여 0.5:1, 1:1, 1:0.5로 배합비를 변화시켜 가시세정효율을 관찰하였다.

2.3. 컬럼실험
15,000 mg TPH/kg dry soil 정도로 오염된 인공요법토양을 직경 4.5 cm, 길이 25 cm인 Pyrex 컬럼에 넣고 궁극 용액 (0.47 mg/L)으로 기초 토양층에 적재하였다. 컬럼에 화재용 Teflon 재질의 액체관, 상부는 연결목이 없는 막으로 고정되어 있다. 전체 컬럼을 사용한 재질은 286.3 mL이었다. 토양이 적재된 컬럼에 계면활성제 용액을 0.5, 1, 2, 3 L/min/m²씩 주입하면서 160시간 동안 관찰하였다. 본 실험에 사용된 컬럼설계장치는 Fig. 1과 같으며, 상향류 방식으로 운영하였다.

세정 후 유출되는 계면활성제 용액을 정제한 시간간격으로 계획하여 Teflon 용기에 담아 보관하였으며, 시료의 분석은 EPA Method 8015과 3550을 이용하여 작용하였다. 채취된 시료는 sonication 방법에 의해 추출한 후 가스크로마토그래프(GC, Hewlett Packard 5890 Series II, USA)로 분석하여 TPH의 질량으로 환산하여 계획된 양을 계산하였다. 가스크로마토그래프의 분석조건은 Table 2에 나타내었다.

Table 2. The analytical condition of TPH by gas chromatography

<table>
<thead>
<tr>
<th>GC Model</th>
<th>HP 5890A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>HP-5</td>
</tr>
<tr>
<td>Injection Mode</td>
<td>split</td>
</tr>
<tr>
<td>Injection Temp.</td>
<td>280°C</td>
</tr>
<tr>
<td>Detector Temp.</td>
<td>290°C</td>
</tr>
<tr>
<td>Oven Temp.</td>
<td>Initial 80°C, 3 min</td>
</tr>
<tr>
<td></td>
<td>Slope 10°C/min</td>
</tr>
<tr>
<td></td>
<td>Final 290°C, 10 min</td>
</tr>
<tr>
<td>Carrier Gas</td>
<td>N₂</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>4 mL/min</td>
</tr>
<tr>
<td>Detector</td>
<td>FID</td>
</tr>
<tr>
<td>Injection Volume</td>
<td>1 µL</td>
</tr>
<tr>
<td>Split Ratio</td>
<td>70</td>
</tr>
</tbody>
</table>

3. 결과 및 토의

3.1. 최적화 실험
인공으로 오염된 토양의 입경열 오염 부하량은 Fig. 2에서 본 수치보다 하단의 입경이 미세함수록 높으며, 전체(5#4. 이하) 토양의 초기 TPH는 15,000 mg/kg dry soil 정도이다. 에비실험 결과 입경이 작은 토양이 향유함수록 세정효

Journal of KoSSGE Vol. 7, No. 4, pp. 87-91, 2002
3.1 세척용액 종류에 의한 영향

POE₆와 SDS를 1:1로 섞어 1%로 적용한 혼합계면활성
성체의 효율이 78% 정도로 상대적으로 우수했다(Fig. 3).
이는 음이온계 계면활성체의 단방향 사이에 비이온계 계
면활성체의 단방향이 깊게 벌어 단방향 사이의 반발력
감소된 것으로 보이며 비중결의 크기가 증가세가 커지면서, 미세의 안정성이 적은 비이온계 계면활성체의 단방향 사이에 음
이온계 계면활성체의 단방향이 깊게 벌어 미세의 사이
의 반발력을 작게하게 되어 동적으로 안정한 미세의 형
성 하고 미세가 발출하지 못하는 용액이 증가하게된다.
따라서 전례의 영향도 증가일수록 미세의 크기가 중
가와 안정도 증가가 복합적으로 작용하는데 기인하는 것
으로 판단된다. 또한 음이온계 계면활성체는 거품성이
좋고, 온도 변화에ないこと이며, 고온영향의 범위가
큰가 내장성이 좋지 않은 반면 비이온계 계면활성체
는 거품이 적고, 내장성도 좋으며, 자연성의 계면성
이 큰가 온도변화에 민감하다. 이와 같은 상호 보완
적인 성질로 인하여 음이온계 계면활성체와 비이온계
계면활성체의 혼합계면활성체의 계면장이 우수하게 나
타는 것으로 판단된다. 그러나 1%의 상해도 계면
성체의 SDS는 생물학적 자극성 비율이 낮고, POE₆와
POE₆를 1:1로 섞어 1%로 적용한 혼합계면활성
체를 채용하였음.

3.2. 실험실

세척용액 주입 유량을 변화시키면서 실험한 결과를
시작용액이 유리한 시간과 pore volume에 따라 표현하며
Fig. 5에 나타났다. Fig. 5(a)에서 볼 수 있듯이 주입
flux가 3 L/min/㎡인 경우에 세척효율이 77% 정도로 상
대적으로 높았다. 이는 토양수의 흡수율에 flux가 물수로
물리적인 흡착 강도가 높아지고 농도차에 따른 확산현상
이 강하게 작용하기 때문인 것으로 판단된다.

 같은 pore volume의 시작용액이 다르기 때문에 Fig.
5(b)에서 볼 수 있듯이 flux가 작용수로 계획적이었다.
이는 flux가 작용수로 세척액의 페어 내 채수시간 증가로
Fig. 5. TPH removal efficiency vs. surfactant solution flux (initial TPH conc. = 13,500 mg TPH/kg dry soil, type of surfactant = POE₈ + POE₄, surfactant conc. = 1%, dilution ratio = 1:1, weight of contaminated soil = 500 g). (a) TPH removal efficiency vs. time, (b) TPH removal efficiency vs. pore volume.

인한 오염토양과 세정액 간의 접촉시간이 길어졌기 때문에 오염토양과 세정액 간의 접촉시간에 따라 세정액의 TPH 를 흡수하는 현상을 측정할 수 있는 것으로 판단된다. 12)

4. 결론

1) 분석적 실험 결과 POE₈와 SDS 혼합물과의 접촉시간이 오염토양의 효율에 영향을 미치는 결과 1:1로 혼합한 경우에 가장 높은 효율이 나타났다.

2) 실험 결과 혼합세정액계의 성능을 평가하는데 있어 투과유량의 영향을 고려한 결과 1%까지 효율이 증가하며 1% 이상의 농도에서는 다가와는 성장을 나타내었다.

3) 세정액의 농도에 따라 영향을 미치는 결과 1:1로 혼합하였을 경우의 세정효율이 가장 높았다. 따라서 POE₈, POE₄와 SDS 혼합물의 농도, 접촉시간 등이 TPH 제거율에 영향을 미치는 결과가 나타나야 할 것으로 판단된다.

참고문헌

8. EPA Method 8015B, Nonhalogenated Organic Using GC/FID, EPA.
9. EPA Method 3550B, Ultrasonic Extraction, EPA.

Journal of KoSSGE Vol. 7, No. 4, pp. 87-91, 2002