• Title/Summary/Keyword: ground rainfall

Search Result 400, Processing Time 0.022 seconds

Parameter Estimation of Water Balance Analysis Method and Recharge Calculation Using Groundwater Levels (지하수위를 이용한 물수지분석법의 매개변수추정과 함양량산정)

  • An, Jung-Gi;Choi, Mu-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.299-311
    • /
    • 2006
  • In this paper it is outlined the methodology of estimating the parameters of water balance analysis method for calculating recharge, using ground water level rises in monitoring well when values of specific yield of aquifer are not available. This methodology is applied for two monitoring wells of the case study area in northern area of the Jeiu Island. A water balance of soil layer of plant rooting zone is computed on a daily basis in the following manner. Diect runoff is estimated by using SCS method. Potential evapotranspiration calculated with Penman-Monteith equation is multiplied by crop coefficients($K_c$) and water stress coefficient to compute actual evapotranspiration(AET). Daily runoff and AET is subtracted from the rainfall plus the soil water storage of the previous day. Soil water remaining above soil water retention capacity(SWRC) is assumed to be recharge. Parameters such as the SCS curve number, SWRC and Kc are estimated from a linear relationship between water level rise and recharge for rainfall events. The upper threshold value of specific yield($n_m$) at the monitoring well location is derived from the relationship between rainfall and the resulting water level rise. The specific yield($n_c$) and the coefficient of determination ($R^2$) are calculated from a linear relationship between observed water level rise and calculated recharge for the different simulations. A set of parameter values with maximum value of $R^2$ is selected among parameter values with calculated specific yield($n_c$) less than the upper threshold value of specific yield($n_m$). Results applied for two monitoring wells show that the 81% of variance of the observed water level rises are explained by calculated recharge with the estimated parameters. It is shown that the data of groundwater level is useful in estimating the parameter of water balance analysis method for calculating recharge.

A Study on Correlation between El-Nino and Winter Temperature and Precipitation in Korea (엘니뇨와 한국의 겨울 기온 및 강수량과의 상관에 관한 연구)

  • Min, Woo-Ki;Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.151-164
    • /
    • 1998
  • I analyzed the correlation between El-Nino phenomenon and our country's temperature and precipitation laying the stress on the anomaly, and the result of this analysis is as follows: (1) The extraction of the occurrences of El-Nino at the place of sea surface around Nino.3 which was known as the sea area under observation for El-Nino reveals that there are 9 years (1969, 1970, 1973, 1977, 1987, 1992, 1995, 1998) when the temperature anomaly in January is more than 1.0 during the period of research years ($1969{\sim}1998$). (2) The tendency of change of sea surface temperature around Nino.3 and that of our country are about the same, but the anomaly of Pusan and Inchon was much greater than that of Jangki in the East Coast. (3) The anomaly of sea surface temperature around Nino.3 and that of the ground temperature showed the similar changing tendency, the temperature of our country has something to do with that of sea surface as the correlation of ground temperature with the temperature of sea surface showed 0.31. Anomaly warm winter has something to do with El-Nino because the temperature of our country was high when El-Nino phenomenon appeared. (4) As for the precipitation, we can see that it has generally increased after 1989 when the phenomenon of warm climate was intense than before that year. But as we study the change of anomaly, the precipitation has less correlation in comparison with the ground temperature. The precipitation in 1973, 1983 and 1987 which were El-Nino years was correlated with El-Nino. While the change of sea surface temperature has showed a tendency of plus(+)increase since 1990, the precipitation has showed a tendency of minus (-)decrease. Therefore it seems that the temperature of sea surface has little correlation with the amount of rainfall.

  • PDF

A Field Survey and Analysis of Ground Water Level and Soil Moisture in A Riparian Vegetation Zone (식생사주 역에서 지하수위와 토양수분의 현장 조사·분석)

  • Woo, Hyo-Seop;Chung, Sang-Joon;Cho, Hyung-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.797-807
    • /
    • 2011
  • Phenomenon of vegetation recruitment on the sand bar is drastically rising in the streams and rivers in Korea. In the 1960s prior to industrialization and urbanization, most of the streams were consisted of sands and gravels, what we call, 'White River'. Owing to dam construction, stream maintenance, etc. carried out since the '70s, the characteristic of flow duration and sediment transport have been disturbed resulting in the abundance of vegetation in the waterfront, that is, 'Green River' is under progress. This study purposed to identify the correlation among water level, water temperature, rainfall, soil moisture and soil texture out of the factors which give an effect on the vegetation recruitment on the sand bar of unregulated stream. To this purpose, this study selected the downstream of Naeseong Stream, one of sand rivers in Korea, as the river section for test and conducted the monitoring and analysis for 289 days. In addition, this study analyzed the aerial photos taken from 1970 to 2009 in order to identify the aged change in vegetation from the past to the present. The range of the tested river section was 361 m in transverse length and about 2 km in longitudinal length. According to the survey analysis, the tested river section in Naeseong Stream was a gaining river showing the higher underground-water level by 20~30 m compared to Stream water level. The difference in the underground water temperature was less than $5^{\circ}C$ by day and season and the Stream temperature did not fall to $10^{\circ}C$ and less from May when the vegetation germination begins in earnest. The impact factor on soil moisture was the underground water level in the lower layer and the rainfall in the upper layer and it was found that all the upper and lower layer were influenced by soil particle size. The soil from surface to 1 m-underground out of 6 soil moisture-measured points was sand with the $D_{50}$ size of 0.07~1.37 mm and it's assumed that the capillary height possible in the particle size would reach around 14~43 cm. On the other hand, according to the result of space analysis on the tested river section of unregulated stream for 40 years, it was found that the artificial disturbance and drought promoted the vegetation recruitment and the flooding resulted in the frequency extinction of vegetation communities. Even though the small and large scales of recruitment and extinction in vegetation have been repeated since 1970, the present vegetation area increased clearly compared to the past. It's found that the vegetation area is gradually increasing over time.

Evaluation of Countermeasures Effectiveness in a Radioactively Contaminated Urban Area Using METRO-K : The Implementation of Scenarios Designed by the EMRAS II Urban Areas Working Group (METRO-K를 사용한 방사능으로 오염된 도시지역에서 대응행위효과 평가 : EMRAS II 도시오염평가분과 시나리오의 이행)

  • Hwang, Won-Tae;Jeong, Hae-Sun;Jeong, Hyo-Joon;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.108-115
    • /
    • 2012
  • The Urban Areas Working Group within the EMRAS-2 ($\underline{E}$nvironmental $\underline{M}$odelling for $\underline{RA}$diation $\underline{S}$afety, Phase 2), which has been supported by the IAEA (International Atomic Energy Agency), has designed some types of accidental scenarios to test and improve the capabilities of models used for evaluation of radioactive contamination in urban areas. For the comparison of the results predicted from the different models, the absorbed doses in air were analyzed as a function of time following the accident with consideration of countermeasures to be taken. Two kinds of considerations were performed to find the dependency of the predicted results. One is the 'accidental season', i.e. summer and winter, in which an event of radioactive contamination takes place in a specified urban area. Likewise, the 'rainfall intensity' on the day of an event was also considered with the option of 1) no rain, 2) light rain, and 3) heavy rain. The results predicted using a domestic model of METRO-K have been submitted to the Urban Areas Working Group for the intercomparison with those of other models. In this study, as a part of these results using METRO-K, the countermeasures effectiveness in terms of dose reduction was analyzed and presented for the ground floor of a 24-story business building in a specified urban area. As a result, it was found that the countermeasures effectiveness is distinctly dependent on the rainfall intensity on the day of an event, and season when an event takes place. It is related to the different deposition amount of the radionuclides to the surfaces and different behavior on the surfaces following a deposition, and different effectiveness from countermeasures. In conclusion, a selection of appropriate countermeasures with consideration of various environmental conditions may be important to minimize and optimize the socio-economic costs as well as radiation-induced health detriments.

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

The Application of Aluminum Coagulant for the Improvement of Water Quality in Three Recreational Ponds (알루미늄 응집제를 사용한 호수수질 개선 사례 연구)

  • Kang, Phil-Goo;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.447-454
    • /
    • 2003
  • Aluminum coagulant was applied to two eutrophic lakes (Lake Sukchon, in Seoul, and a pond on the campus of Kangwon National University), to precipitate suspended particles and phosphate from the water column. Aluminum sulfate (alum) was used for seven treatments and polyaluminum chloride (PAC) was used for one treatment. The effect of treatment varied depending on the dose of alumium coagulant. Particles and phosphate were completely precipitated from the water column with a dose of 10.0 mgAl/l. Partial removal was observed at doses of 3.3 and 1.8 mgAl/l, but not at 0.45 mgAl/l. Therefore, coagulant should be applied at a dose over the threshold in order to remove particles effectively, which seems to be between 1.8 and 10.0 mgAl/l. The length of treatment effect was determined by new inputs of nutrients and particles from external sources. Renewal of pond water by stream water caused recovery of algal growth in Lake Sukchon, and rainfall runoff and ground water pumping caused a return of turbid water in the campus pond. During treatment there was no sign of decreasing pH, or harmful effects on fish or mussels. Aluminum coagulant may be an economically feasible alternative for water quality improvement when the external control of pollutant sources is difficult. However, repeated application is required when there is a renewal of lake water or new input of nutrients.

Reservoir Disaster Monitoring using Unmanned Aerial Photogrammetry (무인항공사진을 이용한 저수지 방재 모니터링)

  • Park, Hong Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.143-149
    • /
    • 2014
  • The Disaster planning for the reservoir should be more quickly and intuitively establish measures by means of the sequential monitoring of change status of the reservoir water level and water surface area. This paper presents an approach using the orthophoto image produced by the periodic unmanned aerial photogrammetry and analyzed the feasibility. Total three time of unmanned aerial survey were conducted to make orthophoto images for the Seongnae reservoir and we analyzed the amount of changes for water level and surface area compare with each images. As the Analysis results, it was possible to effectively observe the increase in the water level rises and the surface area due to the rainfall. The maximum deviations of orthophoto images was 7.5cm in X-direction, 10.8cm in Y-direction and 14.1cm in elevation compare with ground surveying results. Therefore, we conclude that the unmanned aerial photogrammetry could be applied with comprehensive reservoir monitoring works for disaster management for reservoir in the future. And, the orthophoto production takes about two hours to shoot the images, and approximately four hours is considered for the image processing. So, the unmanned aerial photogrammetry is considered to be the best disaster work that requires urgent because analysis is possible in the shooting day.

Projected Climate Change Scenario over East Asia by a Regional Spectral Model (동아시아 지역에서의 지역 분광 모델을 이용하여 투영시킨 기후변화 시나리오)

  • Chang, Eun-Chul;Hong, Song-You
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.770-783
    • /
    • 2011
  • In this study, we performed a downscaling of an ECHAM5 simulated dataset for the current and future climate produced under the Special Report on Emission Scenarios A1B (SRES A1B) by utilizing the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). The current climate simulation was performed for the period 1980-2000 and the future climate run for the period 2040-2070 for the COordinated Regional climate Downscaling EXperiment (CORDEX)'s East Asia domain. The RSM is properly able to reproduce the climatological fields from the evaluation of the current climate simulation. Future climatological precipitation during the summer season is increased over the tropical Oceans, the maritime-continent, and Japan. In winter, on the other hand, precipitation is increased over the tropical Indian Ocean, the maritime-continents and the Western North Pacific, and decreased over the eastern tropical Indian Ocean. For the East Asia region few significant changes are detected in the precipitation climatological field. However, summer rainfall shows increasing trend after 2050 over the region. The future climate ground temperature shows a clear increasing trend in comparison with the current climate. In response to global warming, atmospheric warming is clearly detected, which strengthens the upper level trough.

Coupled Model Development between Groundwater Recharge Quantity and Climate Change Using GIS (GIS를 이용한 기후변화 연동 지하수 함양량 산정 모델 개발 및 검증)

  • Lee, Moung-Jin;Lee, Joung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.36-51
    • /
    • 2011
  • Global climate change is disturbing the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes. In this study, the authors selected a relevant climate change scenario, A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by periodically and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems of ground circulation system, it may be urgent to recalculate the groundwater recharge quantity and consequent change under future climate change. The space-time calculation of changes of the groundwater recharge quantity in the study area may serve as a foundation to present additional measures to improve domestic groundwater resource management.

Assessing Groundwater Vulnerability Using DRASTIC Method and Groundwater Quality in Changwon City (DRASTIC과 지하수 수질에 의한 창원시 지하수 오염취약성 평가)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Moo-Jin;Kim In-Soo;Hwang Han-Seok
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.631-645
    • /
    • 2004
  • This study assesses groundwater vulnerability to contaminants in industrial and residential/commercial areas of the city of Changwon, using DRASTIC technique and groundwater data. The DRASTIC technique was originally applied to situations in which the contamination sources are at the ground surface, and the contaminants flow into the groundwater with infiltration of rainfall. Mostly the industrial area has higher DRASTIC indices than the residential/commercial area. However, a part of the residential/commercial area having much groundwater production and great drawdown is more contaminated in groundwater than other industrial and the residential/commercial areas even if it has lowest DRASTIC indices in the study area. It indicates that groundwater contamination in urban areas can be closely related to excessive pumping resulting in a lowering of the water level. The correlation coefficient between minimum DRASTIC indices and the degree of poor water quality for 10 districts is as low as 0.40. On the other hand, the correlation coefficients between minimum DRASTIC indices and the groundwater discharge rate, and between minimum DRASTIC indices and well distribution density per unit area are 0.70 and 0.87, respectively. Thus, to evaluate the potential of groundwater contamination in urban areas, it is necessary to consider other human-made factors such as groundwater withdrawal rate and well distribution density per unit area as well as the existing seven DRASTIC factors.