DOI QR코드

DOI QR Code

A Field Survey and Analysis of Ground Water Level and Soil Moisture in A Riparian Vegetation Zone

식생사주 역에서 지하수위와 토양수분의 현장 조사·분석

  • Woo, Hyo-Seop (Water Resources & Environment Research Department, Korea Institute of Construction Technology) ;
  • Chung, Sang-Joon (Korea Institute of Construction Technology) ;
  • Cho, Hyung-Jin (Dept. of Biological Sciences, University of Inha)
  • 우효섭 (한국건설기술연구원 수자원환경연구본부 하천해안항만연구실) ;
  • 정상준 (한국건설기술연구원 하천해안항만연구실) ;
  • 조형진 (인하대학교 대학원 생명과학과)
  • Received : 2011.06.28
  • Accepted : 2011.09.14
  • Published : 2011.10.31

Abstract

Phenomenon of vegetation recruitment on the sand bar is drastically rising in the streams and rivers in Korea. In the 1960s prior to industrialization and urbanization, most of the streams were consisted of sands and gravels, what we call, 'White River'. Owing to dam construction, stream maintenance, etc. carried out since the '70s, the characteristic of flow duration and sediment transport have been disturbed resulting in the abundance of vegetation in the waterfront, that is, 'Green River' is under progress. This study purposed to identify the correlation among water level, water temperature, rainfall, soil moisture and soil texture out of the factors which give an effect on the vegetation recruitment on the sand bar of unregulated stream. To this purpose, this study selected the downstream of Naeseong Stream, one of sand rivers in Korea, as the river section for test and conducted the monitoring and analysis for 289 days. In addition, this study analyzed the aerial photos taken from 1970 to 2009 in order to identify the aged change in vegetation from the past to the present. The range of the tested river section was 361 m in transverse length and about 2 km in longitudinal length. According to the survey analysis, the tested river section in Naeseong Stream was a gaining river showing the higher underground-water level by 20~30 m compared to Stream water level. The difference in the underground water temperature was less than $5^{\circ}C$ by day and season and the Stream temperature did not fall to $10^{\circ}C$ and less from May when the vegetation germination begins in earnest. The impact factor on soil moisture was the underground water level in the lower layer and the rainfall in the upper layer and it was found that all the upper and lower layer were influenced by soil particle size. The soil from surface to 1 m-underground out of 6 soil moisture-measured points was sand with the $D_{50}$ size of 0.07~1.37 mm and it's assumed that the capillary height possible in the particle size would reach around 14~43 cm. On the other hand, according to the result of space analysis on the tested river section of unregulated stream for 40 years, it was found that the artificial disturbance and drought promoted the vegetation recruitment and the flooding resulted in the frequency extinction of vegetation communities. Even though the small and large scales of recruitment and extinction in vegetation have been repeated since 1970, the present vegetation area increased clearly compared to the past. It's found that the vegetation area is gradually increasing over time.

국내 하천에서 사주 상 식생 활착 현상이 급속하게 진행되고 있다. 1960년대 산업화와 도시화 이전 우리나라 하천은 모래, 자갈이대부분인이른바 'White River (백사장하천)'이었으나, 1970년대이후댐건설, 하천정비등으로유황과유사이 송특성이 교란되어수변에 식생이번무하게 되는이른바 'Green River (식생하천)'가진행중이다. 본 연구는비조절하천사주 상 식생활착에 영향을 미치는 인자 중에서 수위, 수온, 강우, 토양수분, 토양입경 등의 상호연관성을 파악하고자하였다. 이를 위해 우리나라 모래하천인 내성천의 하류를 시험하천구간으로 선정하고, 289일간 모니터링 및 조사 분석을 실시하였다. 또한 과거로부터 현재까지 식생의 경년변화를 파악하기 위해 1970년부터 2009년까지의 항공사진을 분석하였다. 시험하천구간의 범위는 횡단길이 361m, 종단길이 약 2 km이다. 조사 분석 결과 내성천 시험하천구간은 지하수위가 하천수위보다 20~30 cm 가량 높게 나타나는 이득하천이었다. 지하수온은 일별, 계절별 차이가 $5^{\circ}C$ 미만이었고, 하천수온은 식생활착이 본격적으로 시작되는 5월부터 $10^{\circ}C$ 이하로 떨어지지 않았다. 토양수분의 영향인자는 하층은 지하수위, 상층은 강우이며, 상하층은 모두 토양입경에 영향을 받는 것으로 나타났다. 토양수분측정지점 6곳의 지표면~지하 1m까지의 토양은 $D_{50}$ 입경 0.07~1.37mm의 모래이며, 이 입경에서 가능한 모세관 높이는 약 14~43 cm 범위로 추정된다. 한편 비 조절하천인 시험하천구간의 40년간 공간분석 결과, 인위적인 하천교란과 가뭄은 식생활착을 촉진하며, 홍수로 인해 식생군락이 자주 소멸될 수 있음을 확인하였다. 1970년부터 식생의 크고 작은 활착과 소멸이 반복되고 있지만 현재의 식생면적은 과거에 비해 뚜렷하게 증가되어 있다. 식생면적은 시간에 따라 점진적으로 증가하고 있는 것으로 판단된다.

Keywords

References

  1. 건설교통부(2001). 내성천 하천정비기본계획(변경).
  2. 국토해양부(2011). 국가수자원관리종합정보시스템(WAMIS: http://www.wamis.go.kr/).
  3. 남웅, 곽영세, 정인호, 이덕범, 이상석(2008). "임해준설매립지 식물분포와 표층토양의 이화학적 특성." 한국조경학회지, 한국조경학회, 제36권, 제3호, pp. 52-62.
  4. 박봉진, 장창래, 이삼희, 정관수(2008). "댐 하류하천의 사주와 식생 면적 변화에 관한 연구." 한국수자원학회논문집, 한국수자원학회, 제41권, 제12호, pp. 1163-1172. https://doi.org/10.3741/JKWRA.2008.41.12.1163
  5. 우효섭(2008), "화이트리버, 그린리버?" 한국수자원학회지 기술기사, 12월호, pp. 38-47.
  6. 우효섭, 박문형, 조강현, 조형진, 정상준(2010). "댐 하류 충적하천에서 식생 이입 및 천이-낙동강 안동/임하 댐하류하천을 중심으로-." 한국수자원학회논문집, 한국수자원학회, 제43권, 제5호, pp. 455-469.
  7. 이창복(2003). 원색 대한식물도감. 향문사.
  8. 이팔홍(2002). 하천변에 분포하는 버드나무속의 생장특성과 군집 동태. 박사학위논문, 경상대학교.
  9. Amlin, N.M., and Rood, S.B. (2003). "Drought stress and recovery of riparian cottonwoods due to water table alteration along Willow Creek, Alberta." Trees, Vol. 17, pp. 351-358.
  10. Batu, V. (1998). Aquifer Hydraulics-a Comprehensive Guide to Hydrogeologic Data Analysis. John Wiley & Sons, Inc. pp. 52-59.
  11. Chapin, F.S. III, Schultze, E-D., and Mooney, H.A. (1990). "The ecology and economics of storage in plants", Annual Review of Ecological Systems, Vol.21, pp. 423-447. https://doi.org/10.1146/annurev.es.21.110190.002231
  12. Choi, S.U., Yoon, B.M., and Woo, H. (2005). "Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea." River Research and Application, Vol. 21, pp. 315-325. https://doi.org/10.1002/rra.849
  13. Fenner, P.W.W. Brady, and Patton, D.R. (1985). "Effects of regulated water flows on regeneration of Fremont cottonwood." J of Range Management, Vol. 38, No. 2, pp. 135-138. https://doi.org/10.2307/3899256
  14. Gordon, E., and Meentemeyer, R.K. (2006). "Effects of dam operation and land use on stream channel morphology and riparian vegetation." Geomorphology, Vol. 82, pp. 412-429. https://doi.org/10.1016/j.geomorph.2006.06.001
  15. Nakamura, F. (1999). "Influence of dam structures on dynamics of riparian forests." Ecology and Civil Engineering, Vol. 2, No. 2, pp. 125-139. (in Japanese) https://doi.org/10.3825/ece.2.125
  16. Nilsson, C., Ekblad, A., Gardgjell, M., and Carlberg, B. (1999). "Long term effects of river regulation on river margin vegetation." J of Applied Ecology, Vol. 28. pp. 963-987.
  17. Okabe, T., Anase, Y., and Kamada, M. (2001). "Relationship between willow community establishment and hydrogeomorphic process in a reach of alternate bars." Proceedings of the IAHR, Beijing, China.
  18. Polzin, M.L., and Rood, S.B. (2006). "Effective disturbance: seedling safe sites and patch recruitment of riparian cottonwood after a major flood of a mountain river." Wetlands, Vol. 26, No. 4, pp. 965-980. https://doi.org/10.1672/0277-5212(2006)26[965:EDSSSA]2.0.CO;2
  19. Rood, S.B., and Mahoney, J.M. (1990). "Collapse of riparian poplar forests downstream from dams in Western Prairies: Probable causes and prospects for mitigation." Environmental Management, Vol. 14, No. 4, pp. 451-464. https://doi.org/10.1007/BF02394134
  20. Stave, J., Oba, G., and Eriksen, A.B. (2005). "Seedling growth of Acacia tortilis and Faidherbia albida in response to simulated groundwater table." Forest Ecology and Management, Vol. 212, No. 1-3, pp. 367-375 https://doi.org/10.1016/j.foreco.2005.03.023
  21. Williams, G.P., and Wolman, M.G. (1984). Downstream effects of dams on alluvial channels, USGS Professional Paper 1286, Department of the Interior, USA.

Cited by

  1. Responses of Bed Morphology to Hydrological Events with Effect of Vegetation vol.72, pp.2, 2016, https://doi.org/10.2208/jscejam.72.I_601
  2. A Study on Physical Characteristic of Ground water and Sediment Property in Intertidal Flat of Nakdong River Estuary vol.21, pp.5, 2015, https://doi.org/10.7837/kosomes.2015.21.5.467