DOI QR코드

DOI QR Code

Projected Climate Change Scenario over East Asia by a Regional Spectral Model

동아시아 지역에서의 지역 분광 모델을 이용하여 투영시킨 기후변화 시나리오

  • Chang, Eun-Chul (Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University) ;
  • Hong, Song-You (Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University)
  • Received : 2011.11.29
  • Accepted : 2011.12.14
  • Published : 2011.12.31

Abstract

In this study, we performed a downscaling of an ECHAM5 simulated dataset for the current and future climate produced under the Special Report on Emission Scenarios A1B (SRES A1B) by utilizing the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). The current climate simulation was performed for the period 1980-2000 and the future climate run for the period 2040-2070 for the COordinated Regional climate Downscaling EXperiment (CORDEX)'s East Asia domain. The RSM is properly able to reproduce the climatological fields from the evaluation of the current climate simulation. Future climatological precipitation during the summer season is increased over the tropical Oceans, the maritime-continent, and Japan. In winter, on the other hand, precipitation is increased over the tropical Indian Ocean, the maritime-continents and the Western North Pacific, and decreased over the eastern tropical Indian Ocean. For the East Asia region few significant changes are detected in the precipitation climatological field. However, summer rainfall shows increasing trend after 2050 over the region. The future climate ground temperature shows a clear increasing trend in comparison with the current climate. In response to global warming, atmospheric warming is clearly detected, which strengthens the upper level trough.

본 연구에서는 ECHAM5 모델을 통하여 생산된 현재 및 A1B 미래 기후 변화 시나리오에 따른 미래기후 자료를 미 환경예측 센터의 분광모델인 RSM을 이용하여 역학적 규모축소를 수행하였다. 현재 기후 모의는 1980-2000년 기간에 대하여 수행되었으며, 미래 기후 모의는 2040-2070 기간에 대하여 CORDEX에서 제시한 동아시아 영역에서 수행되었다. RSM의 현재 기후 모의 검증을 통해 이 모델이 기후 관점에서 대기 상태를 적절히 모의함을 판단할 수 있었다. 미래 기후 모의 결과를 현재 기후 모의 결과와 비교하여 본 결과, 여름철에 열대 해양, 남아시아, 일본 부근에서 강수가 증가하였으며, 겨울철에는 서북 태평양 지역과 열대 인도양에서 강수가 증가하였고 열대 동인도양에서는 감소하였다. 동아시아 강수의 기후장에 있어서는 미래 기후가 현재와 큰 차이를 보이지 않지만 2050년 이후의 여름철 강수는 점차 증가하는 추세를 나타내고 있다. 미래 기후의 지상 온도는 현재와 비교해 볼 때 명확한 상승이 분석되었다. 대기장에 있어서는 미래 기후에서 지구 온난화에 대한 반응으로 전체적으로 온도와 지위고도장이 증가하는 변화를 나타내었으며 이에 따라 상층 기압골이 발달함을 보였다.

Keywords

References

  1. Adams, R.M., Hurd, B.H., Lenhart, S., and Leary, N., 1998, Effects of global climate change on agriculture: An interpretive review. Climate Research, 11, 19-30. https://doi.org/10.3354/cr011019
  2. Anandhi, A., Srinivas, V.V., Nanjundiah, R.S., and Kumar, D.N., 2008, Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology, 28, 401-40. https://doi.org/10.1002/joc.1529
  3. Brotton, J. and Wall, G., 1997, Climate change and the Bathurst caribou herd in the Northwest Territories Canada. Climatic Change, 35, 35-52. https://doi.org/10.1023/A:1005313315265
  4. Cha, E.J., 2007, El Nino-Southern Oscillation, Indian Ocean Dipole Mode, a relationship between the two phenomena, and their impact on the climate over the Korean Peninsula. Journal of Korean Earth Science Society, 28, 35-44. https://doi.org/10.5467/JKESS.2007.28.1.035
  5. Chang, E.C. and Hong, S.Y., 2011, Spectral nudging sensitivity experiments. Tellus, in review.
  6. Cohen, S.J., Miller, K.A., Hamlet, A.F., and Avis, W., 2000, Climate change and resource management in the Columbia River basin. Water International, 25, 253-272. https://doi.org/10.1080/02508060008686827
  7. Darwin, R.F., Tsigas, M., Lewandrowski, J., and Raneses, A., 1995, World agriculture and climate change. Economic Adaptations Agricultural Economic Report Number 703, US Department of Agriculture Economic Research Service, 100 p.
  8. Ferguson, M.A.D., 1999, Arctic tundra caribou and climatic change: Questions of temporal and spatial scales. Geoscience Canada, 23, 245-252.
  9. Giorgi, F., Hurrell, J.W., Marinucci, M.R., and Beniston, M., 1997, Elevation dependence of the surface climate change signal: A model study. Journal of Climate, 10, 288-296. https://doi.org/10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2
  10. Gosain, A.K., Sandhya, R., and Debajit, B., 2006, Climate change impact assessment on hydrology of Indian river basins Special Section: Climate Change and India. Current Science, 90, 346-353.
  11. Hamilton, L.S., 1995, Mountain cloud forest conservation and research: A synopsis. Mountain Research and Development, 15, 259-266. https://doi.org/10.2307/3673933
  12. Hong, S.Y. and Leetmaa, A., 1999, An evaluation of the NCEP RSM for regional climate modeling. Journal of Climate, 12, 592-609. https://doi.org/10.1175/1520-0442(1999)012<0592:AEOTNR>2.0.CO;2
  13. Hong, S.Y., Noh, Y., and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318-2341, doi:10.1175/MWR3199.1.
  14. Hong, S.Y., Moon, N.K., Lim, K.S.S., and Kim, J.W., 2010, Future climate change scenarios over Korea using a Multi-Nested Downscaling System: A pilot study. Asia-Pacific Journal of Atmospheric Sciences, 46, 425-435. https://doi.org/10.1007/s13143-010-0024-1
  15. Hurkmans, R., Terink, W., Uijlenhoet, R., Torfs, P., Jacob, D., and Troch, P.A., 2010, Changes in streamflow dynamics in the Rhine basin under three high-resolution regional climate scenarios. Journal of Climate, 23, 679-699. https://doi.org/10.1175/2009JCLI3066.1
  16. IPCC, 2007, Climate Change 2007: The physical science basis. IPCC, 996 p.
  17. Juang, H.M.H., Hong, S.Y., and Kanamitsu, M., 1997, The NCEP Regional Spectral Model: An update. Bulletin of the American Meteorological Society, 78, 2125-2143. https://doi.org/10.1175/1520-0477(1997)078<2125:TNRSMA>2.0.CO;2
  18. Kanamaru, H. and Kanamitsu, M., 2007, Scale-selective bias correction in a downscaling of global analysis using a regional model. Monthly Weather Review, 135, 334-350. https://doi.org/10.1175/MWR3294.1
  19. Kanamitsu, M., Yoshimura, K., Yhang, Y.B., and Hong, S.Y., 2010, Errors of interannual variability and trend in dynamical downscaling of reanalysis. Journal of Geophysical Research, 115, D17115, doi:10.1029/ 2009JD013511.
  20. Kang, H.S. and Hong, S.Y., 2008, An assessment of the land surface parameters on the simulated regional climate circulations: The 1997 and 1998 east Asian summer monsoon cases. Journal of Geophysical Research, 113, D15121, doi:10.1029/2007JD009499.
  21. Kirilenko, A.P. and Solomon A.M., 1998, Modeling dynamic vegetation response to rapid climate change using bioclimatic classification. Climatic Change, 38, 15-49. https://doi.org/10.1023/A:1005379630126
  22. Kleinn, J., Frei, C., Gurtz, J., Luthi, D., Vidale, P.L., and Schar, C., 2005, Hydrologic simulations in the Rhine basin driven by a regional climate model. Journal of Geophysical Research, 110, D04102, doi:10.1029/ 2004JD005143.
  23. Koo, M.S. and Hong, S.Y., 2010, Diurnal variations of simulated precipitation over East Asia in two regional climate models. Jounal of Geophysical Research, 115, D05105, doi:10.1029/2009JD012574.
  24. Krasovskaia, I., 1995, Quantification of the stability of river flow regimes. Hydrological Sciences Journal, 40, 587-598. https://doi.org/10.1080/02626669509491446
  25. Kwadijk, J.C.J. and Rotmans, J., 1995, The impact of climate change on the river Rhine: A scenario study. Climatic Change, 30, 397-425. https://doi.org/10.1007/BF01093854
  26. Lee, H.S., Jhun, J.G., Kang, I.S., and Moon, B.K., 2007, Characteristics of atmospheric circulation over east asia associated with unusual climate of Korea in winter 2006/2007. Journal of Korean Earth Science Society, 28, 374-387. https://doi.org/10.5467/JKESS.2007.28.3.374
  27. Menzel, L., Thieken, A., Schwandt, D., and Burger, G. 2006, Impact of climate change on the regional hydrology - scenario-based modeling studies in the German Rhine catchment. Natural Hazards, 38, 45-61. https://doi.org/10.1007/s11069-005-8599-z
  28. Miller, J.R., Dixon, M.D., and Turner, M.G., 2004, Response of avian communities in large-river floodplains to environmental variation at multiple scales. Ecological Applications 14, 1394-1410. https://doi.org/10.1890/02-5376
  29. Mirza, M.Q., Warrick, R.A., Ericksen, N.J., and Kenny, G.J., 1998, Trends and persistence in precipitation in the Ganges Brahmaputra and Meghna Basins in South Asia. Hydrological Sciences Journal, 43, 845-858. https://doi.org/10.1080/02626669809492182
  30. Mitchell, T.D. and Jones, P.D., 2005, An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693-712. doi:10.1002/joc.1181.
  31. Oh, S.G., Suh, M.S., Myoung, J.S., and Cha, D.H., 2011, Impact of boundary conditions and cumulus parameterization schemes on regional climate simulation over South-Korea in the CORDEX-East Asia domain using the RegCM4 model. Journal of Korean Earth Science Society, 32, 373-387. https://doi.org/10.5467/JKESS.2011.32.4.373
  32. Pounds, J.A., Fogden, M.P.L., and Campbell, J.H., 1999, Biological response to climate change on a tropical mountain. Nature, 398, 611-615. https://doi.org/10.1038/19297
  33. Reynard, N.S., Prudhomme, C., and Crooks, S.M., 1998, The potential impacts of climate change on the flood characteristics of a large catchment in the UK. Proceedings of the Second International Conference on Climate and Water Espoo Finland August 1998. Helsinki University of Technology, Helsinki, Finland, 320-332.
  34. Risbey, J.S. and Entekhabi D., 1996, Observed Sacramento Basin streamflow response to precipitation and temperature changes and its relevance to climate impact studies. Journal of Hydrology, 184, 209-223. https://doi.org/10.1016/0022-1694(95)02984-2
  35. Roeckner, E., Bauml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A., 2003, The atmospheric general circulation model ECHAM5, Part I: model description. Technical Report 349, Max Planck Institute for Meteorology, 140 p.
  36. Selvaraju, R., 2003, Impact of El-Nino-southern oscillation on Indian foodgrain production. International Journal of Climatology, 23, 187-206. https://doi.org/10.1002/joc.869
  37. Stott, P.A., Jones, G.S., Lowe, J.A., Thorne, P., Durman, C., Johns, T.C., and Thelen, J.C., 2006, Transient climate simulations with the HadGEM1 climate model: Causes of past warming and future climate change. Journal of Climate, 19, 2763-2782. doi:10.1175/ JCLI3731.1
  38. Sun, W.Y., Min, K.H., and Chern, J.D., 2011, Numerical study of 1998 late summer flood in East Asia. Asia-Pacific Journal of Atmospheric Sciences, 47, 123-135. https://doi.org/10.1007/s13143-011-0003-1
  39. Tyler, M.J., 1994, Climatic change and its implications for the amphibian fauna. Transactions of the Royal Society of South Australia, 118, 53-57.
  40. Vicente-Serrano, S.M. and Lopez-Moreno, J.I., 2006, The influence of atmospheric circulation at different spatial scales on winter drought variability through a Semi-Arid Climatic Gradient in Northeast Spain. International Journal of Climatology, 26, 1427-1453. https://doi.org/10.1002/joc.1387
  41. Xie, P. and Arkin, P.A., 1997, Global precipitation: A 17-yr monthly analysis based on gauge observations, satellite estimates, and numerical model output. Bulletin of the American Meteorological Society, 78, 2539-2558. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  42. Yaning, C., Kuniyoshi, T., Changchun X., Yapeng C., and Zongxue X., 2006, Regional climate change and its effects on river runoff in the Tarim basin China. Hydrological Processes, doi:10.1002/hyp6200.
  43. Yhang, Y.B. and Hong, S.Y., 2008, A simulated climatology of the East Asian summer monsoon using a Regional Spectral Model. Asia-Pacific Journal of Atmospheric Sciences, 44, 325-339.

Cited by

  1. The Global/Regional Integrated Model system (GRIMs) vol.49, pp.2, 2013, https://doi.org/10.1007/s13143-013-0023-0
  2. Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model vol.117, pp.3-4, 2014, https://doi.org/10.1007/s00704-013-1034-6
  3. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario vol.2014, pp.1687-9317, 2014, https://doi.org/10.1155/2014/753790
  4. The Global Warming Hiatus Simulated in HadGEM2-AO Based on RCP8.5 vol.35, pp.4, 2014, https://doi.org/10.5467/JKESS.2014.35.4.249
  5. Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP vol.42, pp.3-4, 2014, https://doi.org/10.1007/s00382-013-1841-6
  6. Projected change in East Asian summer monsoon by dynamic downscaling: Moisture budget analysis vol.51, pp.1, 2015, https://doi.org/10.1007/s13143-015-0061-x
  7. Simulation of present-day precipitation over India using a regional climate model vol.128, pp.2, 2016, https://doi.org/10.1007/s00703-015-0409-x
  8. Assessing Future Climate Changes in the East Asian Summer and Winter Monsoon Using Regional Spectral Model vol.94A, pp.0, 2016, https://doi.org/10.2151/jmsj.2015-051
  9. Future climate projection under IPCC A1B scenario in the source region of Yellow River with complex topography using RegCM3 vol.119, pp.19, 2014, https://doi.org/10.1002/2014JD021992
  10. Development and implementation of river-routing process module in a regional climate model and its evaluation in Korean river basins vol.120, pp.10, 2015, https://doi.org/10.1002/2014JD022698