• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.031 seconds

Estimation of Mobilized Passive Earth Pressure Depending on Wall Movement in Sand (모래지반에서 벽체의 변위에 따른 수동측토압 산정)

  • Kim, Tae-O;Park, Lee-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.51-60
    • /
    • 2020
  • Estimation of passive earth pressure is an important factor in anchor block, temporary retaining wall and support block of raker that resist lateral earth pressure. In practice, due to ease of use, it is common to estimate the earth pressure using the theory of Coulomb and Rankine, which assumes the failure plane as a straight line. However, the passive failure plane generated by friction between the wall surface and the soil forms a complex failure plane: a curve near the wall and a flat plane near the ground surface. In addition, the limit displacement where passive earth pressure is generated is larger compared to where the active earth pressure is generated. Thus, it is essential to calculate the passive earth pressure that occurs at the allowable displacement range in order to apply the passive earth pressure to the design for structural stability reasons. This study analyzed the mobilized passive earth pressured to various displacement ranges within the passive limit displacement range using the semi-empirical method considering the complex failure plane.

Estimation of Flexural Strength of Hollow Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 중공형 콘크리트 충전 강관말뚝의 휨강도 산정)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.91-100
    • /
    • 2019
  • Hollow prestressed concrete-filled steel tube (HCFT) piles, which combines PHC piles inside thin-wall steel tubes, were developed to increase the flexural strength of the pile with respect to the lateral load. Since P-M curves are needed for evaluating the structural safety of piles when applying HCFT piles to fields, equations for plotting P-M curves of HCFT piles in limit states were proposed. When the yield strength is applied to the steel tube and PC steel bar of HCFT piles, the proposed equations significantly underestimated the flexural strength of HCFT piles. Unlike the flexural strength test results, the proposed equations also provide greater flexural strengths for 12 mm thick steel pipe piles with the same diameter than for HCFT piles. However, when the ultimate strengths are used instead of the yield strengths for the steel tube and PC steel bar, the proposed equations provide the flexural strengths very close to the flexural strength test results.

Modification of Bearing Capacity Formula Considering Seam Tensile Strength of Geotextile in Soft Ground (연약지반에 포설된 Geotextile 봉합인장강도를 고려한 지지력 수정방정식)

  • Kim, Sun-Hak;Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.59-67
    • /
    • 2019
  • With the increasing use of geotextile mats in dredging and reclaiming work and coastal construction, the assessment of bearing capacity in soft ground has become an important evaluation index for negligent accidents. The review of the allowable bearing capacity of soft ground consisting of inhomogeneous layers by laying geotextile mats and sand mat layers for soft ground improvement is generally compared with the equation of Meyerhof (1974) and Yamanouchi (1985). Mayerhof formula results in economic loss due to underestimation of bearing capacity, and Yamanouchi (1985) formula does not take into account negligent accidents for punching shear failure, so rather high bearing capacity is evaluated. It is considered that economic feasibility and stability will be ensured by proposing a modified formula to calculate the appropriate bearing capacity by applying the seam tensile strength of the geotextile mat to the design standard of soft ground improvement.

Evaluation of the Moment Bearing Capacity of Offshore Bucket Platforms in Sand (사질토 지반에 설치된 해상 버켓작업대의 모멘트 지지력 산정)

  • Vicent, Ssenyondo;Gu, Kyo-Young;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.101-109
    • /
    • 2019
  • The bucket platform is a new structure suitable for construction of offshore bridge foundations and providing the temporary support for equipments and labour. The platform can be subjected to moment loading due to the eccentric loading or the horizontal load by wave and wind. Therefore, a three dimensional finite element analysis was performed to evaluate the moment bearing capacity of the bucket platform, varying soil density, the diameter and embedment depth of the bucket. The numerical modeling was verified and compared with the moment-rotation curve from a field loading test. The uniform sandy ground was assumed and the moment load was applied at the top plate of the platform, increasing bucket rotation. The moment-rotation relations were analyzed to determine the moment capacity, which was influenced by the embedment depth and diameter of the bucket. Finally, a preliminary design equation was suggested to estimate the moment bearing capacity.

Evaluation of Pile Spacing Ratio of Stabilizing Piles for Ground Destruction Reduction at the Time of Soft Ground Excavation (연약지반 굴착시 지반파괴 저감을 위한 억지말뚝의 간격비 평가)

  • Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.47-56
    • /
    • 2016
  • In the case of excavating ground backfilled with soft ground, ground destruction occurs owing to the discharge of groundwater from excavated back ground in spite of earth retaining wall. To minimize this, indoor model test was implemented applying stabilizing pile as a solution for ground destruction. The unreinforced case was compared with the reinforced case and the comparison demonstrated that the ratio of the gap in settlement of the two cases is about three to one, which proves the reinforcement effect (Kim, 2014). This study has carried out the evaluation of appropriate pile spacing ratio, according to the confirmed effect of stabilizing pile. In the evaluation test the case with pile spacing ratio of 0.66 (5 stabilizing piles) was compared with that of 0.76 (3 stabilizing piles), and it has been shown that applying stabilizing pile has effect on ground destruction reduction, but may rather work as load when pile spacing ratio is narrower than a certain interval. So it was found that adjustment for appropriate pile spacing ratio is required at the stage of design. This study has shown that the pile spacing ratio is appropriate at around 0.7~0.8, which reduces ground destruction and does not function as the load of excavated back ground.

A Study on the Factor of Safety for Rock Slopes Based on Three Dimensional Effects (3차원 효과를 고려한 암반사면의 안전율 변화에 관한 연구)

  • Seo, Og-Geon;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2015
  • In the slope stability analysis and design, Limit Equilibrium Method (LEM) and Shear Strength Reduction technique (SSR) are mainly used. Both methods are able to perform two and three dimensional analysis. SSR is considered to be more sensitive and more reasonable than LEM by many researchers. However, in practice LEM is still widely used because of the increase of analysis time and complexity of the model in SSR. In this study, three dimensional analysis of the protruding rock slope is performed by SSR in order to study the effects of protruding length using rock slope FLAC 3D. In this study, as results of analysis variations of the safety factor have been studied according to slope angle, slope height, the soil strength, protruding slope length projected variables. The results show that the factor of safety as more affected by the shapes of the protruding rock slope than the rock strength.

Physical and Mechanical Characteristics of Basalts in Northwestern and Southeastern Jeju Island (제주도 북서부 및 남동부 현무암의 물리적 & 역학적 특성)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.41-52
    • /
    • 2015
  • Volcanic rocks in Jeju Island have vesicular structure caused by various environmental factors, and indicate the differences in geological and mechanical characteristics from region to region. In addition, the bedrock of Jeju Island shows stratified structure, that is, soft layers composed of pyroclastic rocks or cavities are irregularly developed between the basalt layers by several times of volcanic activity. In this study, various physical tests and unconfined compressive strength test were conducted for intact rocks sampled in northwestern onshore and offshore of Jeju Island. The results obtained in the tests were compared with the physical and mechanical characteristics of intact rocks sampled in southeastern offshore of Jeju Island. As a results, it was confirmed that the physical and mechanical characteristics of basalts sampled in northwestern Jeju Island were similar to those of basalts sampled in southeastern offshore of Jeju Island. In addition, it was possible to estimate approximate design parameters from the correlation of mechanical properties with physical properties of basalts in Jeju Island.

A Study on the Stability of Cantilever Retaining Wall with a Short Heel (뒷굽이 짧은 캔틸레버 옹벽의 안정성에 관한 연구)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.17-28
    • /
    • 2018
  • Important parameters for the stability checks of cantilever wall are the active earth pressure and the weight of soil above the heel of the base slab. If the heel length is so long enough that the shear zone bounded by the failure plane is not obstructed by the stem of the wall, the Rankine active condition is assumed to exist along the vertical plane which is located at the edge of the heel of the base slab. Then the Rankine active earth pressure equations may be theoretically used to calculate the lateral pressure on the vertical plane. However, in case of the cantilever wall with a short heel, the application of Rankine theory is not only theoretically incorrect but also makes the lateral earth pressure larger than the actual pressure and results in uneconomical design. In this study, for the cantilever wall with a short heel the limit analysis method is used to investigate the mechanism of development of the active earth pressure and then the magnitude and location of the resultants of the pressure and the weight of the soil above the heel are determined. The calculated results are compared with the existing methods for the stability check. In case of the cantilever wall with a short heel, the results by the Mohr circle method and Teng's method show max. 3.7% and 32% larger than those of the limit analysis method respectively.

Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준)

  • Ryu, Tae Gyung;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.15-23
    • /
    • 2015
  • An experimental study has been conducted to evaluate the effects of average and cyclic shear stresses on the undrained failure behaviors of dense marine silty sand by using the Cyclic Direct Simple Shear apparatus. The results show that when the average shear stress ratio is zero, symmetric cyclic shear deformation is the major component of deformation, and permanent shear deformation is relatively small. On the other hand, when the average shear stress ratio is larger than zero, asymmetric permanent shear deformation is the major component, and cyclic shear deformation does not change much as the number of cyclic loads increases. The average shear stress ratio has less effects on the number of cyclic loads needed to fail, as compared with the cyclic shear stress ratio. The proposed stress-dependent failure contour can effectively be used to assess the cyclic shear strength of soil beneath the foundation for the design of offshore structures.

Assesment on the Characteristics of Foundation Bearing Capacity in Reinforced Soil Wall Structure of Large Scale (대규모 보강토옹벽 구조물에서의 기초지반 지지력특성 평가)

  • Han, Jung-Geun;Yoo, Seung-Kyung;Cho, Sam-Deuk;Lee, Kyang-Woo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • The reinforced soil retaining wall structures of serious types with environmental are widely expanding more and more in Korea, which divided conventional type's reinforced soil retaining wall on segmental retaining wall. The causes of most crack occurred at block in reinforced soil retaining wall structure caused by the differential settlement of foundation. It is difference of settlement for significant factor that with overall slope stability. In this study, design assessment of foundation bearing capacity related to differential settlement of foundation ground was considered. And, also, through case study, the countermeasure methods and its application were suggested that the bearing capacity of foundation had to stabilize. The foundation ground in charge of bearing capacity should be affected by the resisting force of sliding, because the foundation parts of reinforced soil retaining wall were belongs to potential slope sliding area in overall stabilizing including retaining wall structures. Therefore, the analyzing or the designing of bearing capacity for foundation should be considered control capacity on the overall slope sliding.

  • PDF