• Title/Summary/Keyword: geodetic coordinate system

Search Result 59, Processing Time 0.028 seconds

The Coordinate Transformation of Digital Geological Map in accordance with the World Geodetic System (A Case Study of Chungju and Hwanggang-ri Sheets using ArcToolbox) (수치지질도의 세계측지계 좌표변환 (ArcToolbox를 이용한 충주 및 황강리 도폭의 사례))

  • Oh, Hyun-Joo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.537-543
    • /
    • 2015
  • In Korea, the use of world geodetic system(WGS) has been mandated in year 2010. Accordingly, the national geographic information institute(NGIS) provides the digital maps according to the WGS. Nevertheless, most of the digital geological maps are still based on the Tokyo Datum(TD). Therefore, users should conduct 2D/3D geological spatial analysis after converting the coordinates of digital geological maps to WGS. The conversion process is often tedious and troublesome for certain users. Therefore, in this study, the method to transform coordinate from TD to WGS using ArcToolbox is introduced for users not familiar with the process. For a better appreciation, the Chungju and Hwanggang-ri digital sheets of 1:50,000 scale was chosen as an example. Here, Chungju and Hwanggang-ri sheets were defined based on the TD-central origin and TD-east origin, respectively. The two sheets were merged after the transformation of TD-east origin of Hwanggang-ri to the TD-central origin, and eventually transformed to WGS-central origin. The merged map was found to match exactly with the digital map(Daeso 367041). The problem of coordinate determination in previous digital geological maps was solved effectively. The proposed method is believed to be helpful to 2D/3D geological spatial analysis of various geological thematic maps.

Establishment of the Plane Coordinate System for Framework Data(UTM-K) in Korea (우리나라 기본지리정보 좌표계(UTM-K) 도입에 관한 연구)

  • Choi, Yun Soo;Kim Gun Soo;Park Hong Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.313-321
    • /
    • 2004
  • Korean government has offcially decided to adopt global geodetic reference system(ITRF and GRS80) from 2007 keeping pace with the spread of GNSS. Industries related with LBS and telematics have called for use of the new coordinate system suitable for GIS/GPS applications. The government also defined the single plane coordinate system that covers entire korean peninsula as UTM-K considering DB-based framework data and user-friendliness, and its defects were corrected while being applied to the building of road framework data. The TM projection, and origin scale factor of plane coordinate system, 0.9996were employed in order to satisfy the single plane coordinate system for the entire Korean peninsula. For the origin of plane coordinate system, longitude of $127^{\circ}$30'00" and latitude of $38^{\circ}$00'00" were applied and, for the initial value of plane coordinate system, N=2,000.000m and E=1,000,000m were used. In addition to considerable savings in costs, it is expected that the UTM-K is applicable for correcting errors occurred during acquisition of geographic information and for aggregating map data produced by different sources. However, during the initial stage for introduction, confusion is forecasted due to the use of two different coordinate systems, which may be minimized by continued publicity and education.

A Parallel Processing Technique for Large Spatial Data (대용량 공간 데이터를 위한 병렬 처리 기법)

  • Park, Seunghyun;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Graphical processing unit (GPU) contains many arithmetic logic units (ALUs). Because many ALUs can be exploited to process parallel processing, GPU provides efficient data processing. The spatial data require many geographic coordinates to represent the shape of them in a map. The coordinates are usually stored as geodetic longitude and latitude. To display a map in 2-dimensional Cartesian coordinate system, the geodetic longitude and latitude should be converted to the Universal Transverse Mercator (UTM) coordinate system. The conversion to the other coordinate system and the rendering process to represent the converted coordinates to screen use complex floating-point computations. In this paper, we propose a parallel processing technique that processes the conversion and the rendering using the GPU to improve the performance. Large spatial data is stored in the disk on files. To process the large amount of spatial data efficiently, we propose a technique that merges the spatial data files to a large file and access the file with the method of memory mapped file. We implement the proposed technique and perform the experiment with the 747,302,971 points of the TIGER/Line spatial data. The result of the experiment is that the conversion time for the coordinate systems with the GPU is 30.16 times faster than the CPU only method and the rendering time is 80.40 times faster than the CPU.

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

A Study on 3D-Transformation of Krazovsky Coordinate System (Krassovsky 타원체 좌표의 3차원 변환에 대한 연구)

  • 김감래;전호원;현민호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • Requiring topographic information of map due to retaining russia map, which needed accuracy analysis of russia map and relation between its and south korea's map. In order to obtain exact location information from the map which has different reference datum. We have to operate coordinate transformation between maps applied different ellipsoid. In this paper, in order to evaluate accuracy between two maps applied different ellipsoid, it has studied theory of map projection and coordinate transformation. Then, select each point which can be recognized on the two maps for accuracy evaluation. After obtaining coordinate values for each point of same area, it is evaluated accuracy each geodetic coordinate and each TM coordinate. As a result of this study, the maps which have different reference datum could be used if the exact origin shift could be obtained and applied.

  • PDF

DEVELOPMENT OF A GIS-BASED GEOTECHNICAL INFORMATION ENTRY SYSTEM USING THE GEOTECHNICAL INVESTIGATION RESULT FORM AND METADATA STANDARDIZATION

  • YongGu Jang;HoYun, Kang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1388-1395
    • /
    • 2009
  • In March 2007, Korea's Ministry of Construction & Transportation (MOCT) established "Guidelines on the Computerization and Use of Geotechnical Investigation Results," which took effect as official instructions. The 2007 Geotechnical Information DB Construction Project is underway as a model project for a stable geotechnical information distribution system based on the MOCT guidelines, accompanied by user education on the geotechnical data distribution system. This study introduces a geotechnical data entry system characterized by the standardization of the geotechnical investigation form, the standardization of metadata for creating the geotechnical data to be distributed, and the creation of borehole space data based on the world geodetic system according to the changes in the national coordinate system, to define a unified DB structure and the items for the geotechnical data entry system and to computerize the field geotechnical investigation results using the MOCT guidelines. In addition, the present operating status of the geotechnical data entry system and entry data processing statistics are introduced through an analysis of the model project, and the problems of the project are analyzed to suggest improvements. Education on, and the implementation of, the model project for the geotechnical data entry system, which was developed via the standardization of the geotechnical investigation results form and the metadata for institutions showed that most users can use the system easily. There were problems, however, including those related to the complexity of metadata creation, partial errors in moving to the borehole data window, partial recognition errors in the installation program for different computer operating systems, etc. Especially, the individual standard form usage and the specificity of the person who enters the geotechnical information for the Korea National Housing Corporation, among the institutions under MOCT, required partial improvement of the geotechnical data entry system. The problems surfaced from this study will be promptly addressed in the operation and management of the geotechnical data DB center in 2008.

  • PDF

Development of flow measurement method using drones in flood season (I) - aerial photogrammetry technique (드론을 이용한 홍수기 유량측정방법 개발(I) - 항공사진측량 기법 적용)

  • Lee, Tae Hee;Lim, Hyeokjin;Yun, Seong Hak;Kang, Jong Wan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1049-1057
    • /
    • 2020
  • This study aimed to develop a flow measurement method using drone in flood season. Measuring flow in all branches is difficult to conduct annually due to budget and labor limitation, safety and river works. Especially when heavy rain like storm comes, changes in stage-discharge relationship should be reviewed; however, it is usually impeded by the aforementioned issues. To solve the problem, it developed a simple measuring method with a minimum of labor and time. A numeric map and numeric orthophoto coordinate of South Korea are mostly based on Transverse Mercator Projection (TM) in accordance with rectangular coordinate system and use World Geodetic Reference System 1980 (GRS80) oval figure for conversion. Applying a concept of aerial photogrammetry, it located four visible Ground Control Points (GCP) near the river at Uijeongbu-si (Singok Bridge) and Yeongdong-gun (Youngdong 2nd Bridge) station and measured the coordinates using VRS DGPS. Hovering at a same level, drones took orthophoto of water surface at an interval of 3 seconds. It defined the pictures with GRS80 TM coordinate system, a rectangular coordinate system and then conducted an orthometric correction using GCP coordinates. According to X and Y coordinate analysis, it estimated the distance between the floating positions at 3 seconds-intervals and calculated the flow through the flow area according to the flow path. This study attested applicability of the flow measurement method using drone in flood season by applying the rectangular coordinate system based on the concept of aerial photogrammetry.

Design of GPS-aided Dead Reckoning Algorithm of AUV using Extended Kalman Filter (확장칼만필터를 이용한 무인잠수정의 GPS 보조 추측항법 알고리즘 설계)

  • Kang, Hyeon-Seok;Hong, Sung-Min;Sur, Joo-No;Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • This paper introduces a GPS-aided dead reckoning algorithm that asymptotically estimates the heading bias error of a magnetic compass based on geodetic north, improves the position error accumulated by dead reckoning, and helps the estimated position of an AUV to represent a position in the NED coordinate system, by receiving GPS position information when surfaced. Based on the results of a simulation, the locational error was bounded with a modest distance, after estimating the AUV position and heading bias error of the magnetic compass when surfaced. In other words, it was verified that proposed algorithm improves the position error in the NED coordinate system.

An Integrated Approach to the GIS Data Reengineering for the New Korea Geodetic Datum (세계측지계 도입에 따른 공간데이터 재정비를 위한 통합모델 연구)

  • Lee Yang-Won;Park Key-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.153-171
    • /
    • 2005
  • The newly adopted Korea Geodetic Datum (a.k.a. KGD2002) calls for massive reengineering work on geospatial dataset. The main focus of our study is placed on the strategy and system implementations of the required data reengineering with a keen attention to integrated approaches to interoperability, standardization, and database utilization. Our reengineering strategy includes file-to-file, file-to-DB, DB-to-file, and DB-to-DB conversion for the coordinate transformation of KGD2002. In addition to the map formats of existing standards such as DXF and Shapefile, the newly recommended standards such as GML and SVG are also accommodated in our reengineering environment. These four types of standard format may be imported into and exported from spatial database via KGD2002 transformation component. The DB-to-DB conversion, in particular, includes not only intra-database conversion but also inter-database conversion between SDE/Oracle and Oracle Spatial. All these implementations were carried out in multiple computing environments: desktop and the Web. The feasibility test of our system shows that the coordinate differences between Bessel and GRS80 ellipsoid agree with the criteria presented in the existing researches.

The Korean Geodetic Network Adjustments for EDM Area (국가기준점 망조정에 관한 연구 - EDM 관측지역)

  • Yang, Hyo-Jin;Choi, Yun-Soo;Kwon, Jay-Hyoun;Kim, Dong-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.393-398
    • /
    • 2007
  • According to the Korean datum change to a world geodetic system, the EDM area should be readjusted to provide consistent product over the country. The data set for EDM area is extracted from the previous KTN1987 DB and checked for the moved markers in XY network adjustment which provides quality verification. Then, EDM data set for the seven areas are rebuilt for the adjustment. Since the data is still based on the old datum, the coordinates of the data are transformed by applying the coordinate transformation parameters. Here, the transformation parameters, which were determined for the conversion of 1:50,000 topographic maps by NGII, were used. For each EDM point, the geoidal height from EGM96 model is applied to obtain the ellipsoidal height based on the GRS80. The measured distance projected onto GRS80 is adjusted using BL network adjustment by fixing 2nd order or 3rd order GPS control points. The results from the readjustment show the minimum standard error of 1.37" and the maximum standard error of 2.13". Considering the measurement accuracy of EDM (1.6" corresponding to about 2cm) and GPS position for fixed points (2cm), this result is considered to be reasonable and it is good for the practical use.