Journal of Korea Spatial Information Society Vol.23, No.2 : 1-9, April 2015
http://dx.doi.org/10.12672/ksis.2015.23.2.001

A Parallel Processing Technique for Large Spatial Data
ggsF 27 dlojg s g ¥Y g 7|y

Seunghyun Park - Byoung-Woo Oh
U ouen

of a2l = 22| FA(GPU)s= ol o] Ak =] AAFA(ALU)E B4-51aL Uk tige] ALU= W2 A
sl o182 = 9o, GPUE A&}l Hlol8 2|5 Alg et 31 018 S XAl H317] ¢15te] A]
12 237 o sleh 252 SAE mok SA] 9= P2 A B/t 2 E HRAR 4 H A =g FHs)
Aote] ZAH =} ZN AT L A4 P v 27LE S HRA(UTM) R Fkeof givk. Rt Wt 247 Heke 2}
HE sha/del TS| A3 AT T BT s 2 Akl dasitt 1 =RelAE e S sl
GPUS 283 A3t Iy 3} el & I8 2] 0 = AJ2jsh= 7S Akt o8- 33t HlOIHcJPE‘E o
23 ol AT t8=F 37k B0l EE BE&F 02 5] fiste] g1t dloly U ES shue] o8 mhel =
kg h Memory Mapped File 7]%-& -85} spQlofl H28h= 7]¥& A|¢heteh 1 =20l 4= TIGER/Line H|o]
Bl 2-8-31o] 747,302,9717 9] 0.2 5-d 8 g1k vl o]E o] Har gk 9l e T A 2] 32 GPUE &-8-5t0] HE
2 5Rshe A5 AR CPUE o] 8-sto] Aparwieh ab Aot A5 A=) ap Aks wlarsto] &= 34 4
o Tt A A

7|19I=E : GPU, CUDA, Memory Mapped File, & *]2],

57t HlolE

Abstract Graphical processing unit (GPU) contains many arithmetic logic units (ALUs). Because many ALUs can
be exploited to process parallel processing, GPU provides efficient data processing. The spatial data require many
geographic coordinates to represent the shape of them in a map. The coordinates are usually stored as geodetic
longitude and latitude. To display a map in 2-dimensional Cartesian coordinate system, the geodetic longitude and
latitude should be converted to the Universal Transverse Mercator (UTM) coordinate system. The conversion to the
other coordinate system and the rendering process to represent the converted coordinates to screen use complex
floating-point computations. In this paper, we propose a parallel processing technique that processes the conversion
and the rendering using the GPU to improve the performance. Large spatial data is stored in the disk on files. To process
the large amount of spatial data efficiently, we propose a technique that merges the spatial data files to a large file and
access the file with the method of memory mapped file. We implement the proposed technique and perform the
experiment with the 747,302,971 points of the TIGER/Line spatial data. The result of the experiment is that the
conversion time for the coordinate systems with the GPU is 30.16 times faster than the CPU only method and the
rendering time is 80.40 times faster than the CPU.

Keywords : GPU, CUDA, Memory Mapped File, Parallel processing, Spatial Data

ISSN 2287 -9242(Print)
ISSN 2287-9250(Online)

LA 2

The Graphical Processing Unit(GPU) is originally
used for processing computer graphics. To assure
rendering beautiful graphic effect, the GPU has a lot
of arithmetic logic units (ALUs). The number of the
GPU’s ALU is larger than the CPU’s. This makes the

GPU operate floating point more rapid than the CPU.
Compare with the GPU and the CPU computing speed,
the GPU is superior to the CPU’s computing speed.
Therefore, the GPU can be used to process computations
because of the GPU’s overwhelming ability compared
with the CPU. The GPU’s cores are constructed in
parallel. It is possible to be used to improve performance,

T This paper was supported by Research Fund, Kumoh National Institute of Technology.
* Seunghyun Park, Masters Student, Dept. of Computer Engineering, Kumoh National Institute of Technology.

seeduzl113@gmail.com

** Byoung-Woo Oh, Professor, Dept. of Computer Engineering, Kumoh National Institute of Technology. bwoh@kumoh.ac.kr

(Corresponding Author)

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Seunghyun Park, Byoung-Woo Oh

which processes same calculation with many data.
There are many researches about parallel processing
using the GPU in many areas. In algorithm area, there
are many researches about sorting algorithms in parallel
[1,2,3]. In multimedia area, researches are being
preceded for image processing and coding moving
pictures[4,5,6,7,8].

Spatial data have been widely used as the location
becomes important in the mobile environment. There
are many studies to process spatial data efficiently.
When users process spatial data, they want to represent
spatial data onto a map. It takes much time to process
spatial data because they usually contain a large amount
of coordinates which are necessary to compute the
geometry calculation. It is inefficient to process spatial
data only using the CPU. Thus, there are attempts to
apply parallel processing of spatial data not only using
the CPU but also using the GPU[9,10,11]. Lee[11]
tried to use the GPU to calculate graphics transform
operations, such as rotate, scale, and translate. As a
result of Lee[11], it takes much time to transfer the
result of the graphics transform operations from the
GPU to the CPU. In order to reduce the transferring
time for the result, we propose a technique that renders
the calculated coordinates in parallel way and transfers
the final rendered bitmap to the CPU.

In this paper, we propose a parallel processing
technique for large spatial data. It deals with the large
file that stores spatial data bigger than 4GB. Many
original spatial data files are merged to three files:
spatial record file, part file, and point file. The spatial
record file and part file are smaller than 4GB, but the
point file is very large. The size of a point file for
the experiment is 11GB. The logical limit of the size
is 16EiB in the 64-bit operating system. If the point
file is very large, it is hard to load whole spatial data
into main memory. We exploit the memory mapped
file provided by the Microsoft Windows operating
system to access the very large point file efficiently.
The memory mapped file provides access a file as a
way of a memory access. Memory mapped file loads
a part, named as view, of a file to the main memory.
This process is useful to access large spatial data
sequentially. Some studies exploit the memory mapped
file to share data[12]. The proposed technique loads

the large spatial data with the memory mapped file
and processes the loaded spatial data in parallel way.
The result of the parallel process is rendered onto a
bitmap in parallel way again.

This paper is organized as follows. Chapter 2 in-
troduces CUDA and memory mapped file. Chapter 3
describes the proposed technique for processing large
spatial data with CUDA. Chapter 4 reports the result
of the experiment. Finally, chapter 5 presents con-

clusion and future work.

2. Related Works

2.1 CUDA

NVIDIA developed computing unified device archi-
tecture (CUDA) for general purpose usage of the
GPU[13]. After introducing CUDA, researchers have
applied GPU technology in many areas. The researchers
can easily process a large amount of data efficiently
by utilizing parallelism of the GPU. CUDA’s codes
are written by C language and exploited in the GPU.
CUDA accesses to distinct command and memory of
the GPU. CUDA is provided by NVIDIA Geforce ser-
ies the GPU.

CUDA consists of threads, blocks which are set of
thread and Grids which are sets of block. Each kernel
function makes grid for parallel processing. The Grid
makes one or two dimensional block. Block makes
three dimensional threads and allocates calculation.
CUDA usually uses three memories which are local
memory, shared memory, global memory. Each thread
has own local memory. Each block has shared memory
which is for sharing data between threads which are
in the block.

CUDA provides kernel functions which can be exe-
cuted on many GPU cores in parallel. In the kernel
function, CUDA sets the number of blocks and threads
by using symbols; “<<<”, “>>>” Symbol “>>>”
makes threads which are applied to operation. Symbol
“<<<” determines that the number of blocks are used
for operation. Total numbers of threads for operation
are calculated at the number of blocks times the num-
ber of threads per each block. CUDA provides varia-
bles for operation. Threads which are in a block have

own variable which is called threadIDX. By setting di-
mension of thread, threadIDX can have values of x,
y and z. Variable blockIDX which is built in variable
in CUDA identifies a block in Grid. Variable blockdim
identifies that blocks are set to one or two dimension.
The variables can be accessed in kernel function. In
order to process data on the GPU, CUDA introduces
kernel functions which are built in CUDA. Kernel
function “cudaMalloc()” function allocates memory on
the GPU memory. For transmitting data between CPU
memory and GPU memory, “cudaMemcpy()” function
is used.

2.2 Memory Mapped File

Memory Mapped File (MMF) which is provided by
Operating System is a way to handle files. MMF is
used to handle large files. MMF maps memories of
parts of file to virtual memory on process. MMF can
be shared with several processes. Blocks of file are
connected with Pages in process. MMF processes 1/0
performance by approaching addresses of virtual mem-
ory directly. Data are not changed simultaneously on
processing MMF. Data are changed when memory
frees Pages or MMF is closed. Because approaching
memory directly, it is efficient for MMF to handle
large files. When data of files are changed, whole files
are allocated to main memory and saved again. It takes
much time to handle files. Though, MMF loads part
of a file into main memory without loading whole files.
It can improve performance.

Figure 1 shows a block diagram of MMF. In order
to use MMF, users create Views which can be entire
file or part of the file. MMF handles large file by using
Views. Views consist of Pages. Pages are constructed

at 64Kb. Users make views at 64Kb when utilizing

File
{ \ I
{ 1\ \
¥ ¥ Ty ¥y
View A B C D
Offset A Offset B Offset C Offset D 64K

Figure 1. Example of accessing a memory mapped file

A Parallel Processing Technique for Large Spatial Data

Views. The views are allocated to virtual memory on
process. When we have to change data on file, we find
location of the data by offset of views. For example,
we change data which are in View C area. We find
offset of View C. View C is loaded into main memory.
After change the data of View C, changed data are
maintained in file which is in disk. Without data of
View C, other data are not changed and maintained
in disk. This process is a benefit of MMF. Therefore,
MMF has a benefit for processing spatial data. Files
which consist of spatial data are very large. When we
scale spatial data in shape file, spatial data in shape
file are changed. It takes much time to load shape file
to memory and saved to disk. Though, MMF loads
data which are had to change to memory and reduces

processing time.

3. Technique for processing large
spatial data

We propose a parallel processing technique for large
spatial data. The main idea of the proposed technique
consists of two parts: using memory mapped file for
large spatial data and using the GPU to calculate the
coordinates of the spatial data and to render the result
of the calculation.

3.1 File and Data Structure

There are several kinds of types for spatial data, such
as point, polyline, polygon, etc. In this paper, we deal
with the polyline data type. A polyline consists of one
or more parts. The part of the polyline consists of one
or more line segments with points. Figure 2 shows the
structure of the three files: spatial record file (*.spt),
part file (*.prt), and point file (*.pnt).

The spatial record file consists of 4 attributes: the
number of points, the number of parts, the starting in-
dex of the part, and the starting index of the point.
In Figure 2, the first record in the spatial record file
represents that it has 5 points and 2 parts. The start
index of the part file is 0.

The start index of the point file is 0. The part file
has only the number of points. In Figure 2, the first
part in the part file has 3 points. The point file has

Seunghyun Park, Byoung-Woo Oh

Spatial Record File 'spt-u/

Fart File (" pati

Poirit File (° pnt)

aakac

kY] b)

Figure 2. Structure of the files

Pait 0 | (11}

|n-1|n|n+1|

m

Section Section 0 J
H S
| S N F =
, - Max S i
| A A A R A A A e— [V
\\ diff

Size _/I

Figure 3. Section in-memory Structure for the point file

x and y coordinates for each point.

For processing spatial data on GPU, spatial data
should be allocated to memory in the GPU. According
to the limit of the main memory size and GPU memory
size, large point file cannot be allocated to main
memory and GPU memory. Figure 3 shows the memory
structure to process spatial data. The part structure is
loaded from the part file (*.prt) onto the main memory
and the GPU memory at the same time.

Since the point is very large file, it could not be
loaded onto the memory in the whole file. In order
to load onto the memory, it should be divided by
section. The max size of the section is decided by the
size of the memory in the GPU. We use the half size
of the GPU’s memory size as the max size.

Because the section size cannot exceed the max size,
the section 0 is assigned the parts from 0 to n-1. Notice
that the rectangle (white box) which is located at the
right and is not filled with color in Figure 3 contains
nothing in section 0. The section 1 has parts from n
as shown in Figure 3. The starting offset of the first
point of the section 1 is expected to be the starting
offset of the first point of the nth part. There is

restriction of using memory mapped file. A memory
mapped view of a file aligned to 64KB boundaries.
When the process read the section 1 from the point
file, the start offset should be adjusted to the unit of
64KB. The left-side white rectangle area of the section
1 represents the adjustment in Figure 3. The section
loaded from the point file is transferred to the GPU
memory.

There are three functions are used to manage the
memory mapped file in the Microsoft Windows
operating system, such as CreateFile(), and CreateFile
Mapping(), and MapViewOfFile() function. The Create
File() function opens the point file with parameters,
such as GENERIC READ, OPEN EXISTING, FILE FLAG
SEQUENTIAL SCAN. The CreateFileMapping() function
prepares the memory mapped file with parameter
PAGE READONLY. The MapViewOfFile() function
returns a pointer to the memory address. The section
data structure stores high, low, and diff attributes to
be used to call the MapViewOfFile() function. The high
attribute is used to set the high-order DWORD of the
file offset where the view begins. The low attribute
is the low-order DWORD. The diff is the start offset

of the actual point. It’s presented as the left-side white
rectangle area of the section 1 in Figure 3.

Memory is allocated in the GPU with cudaMalloc()
function before processing the section. The size of the
memory allocated in the GPU is represented as the max
size in Figure 3.

Once the memory is allocated in the GPU, then the
memory is reused for every section to load point data.

3.2 Processing Section

Since the spatial data are usually large, it should be
divided into smaller part to fit in the memory size.
In this paper, we divide the point file into sections.
The section is corresponding to the view of the memo-
ry mapped file. For processing large spatial data effi-
ciently by using memory mapped file, there are two
methods; merging files and making section. In order
to improve processing time, it is efficient to merge
original spatial data files into a file. The limit of the
file size is 4GB in shape file format (*.shp) which is
the de-facto standard to share spatial data. For exam-
ple, the sum of the sizes of the shape files which con-
sist of whole edges (all lines theme) of the TIGER/Line
shape file is bigger than 4GB. Loading each shape files
to memory is not efficient. We merge the shape files
and convert to three files as described in the section A.
Algorithm of processing sections are shown in Figure 4.

The sections are read sequentially from the point file
and loaded onto the main memory. After reading a sec-
tion, the section should be transferred to the GPU.
The cudaMemcpy() function is used to load the point

Using GPU

Read the First Section from the Point File;

while (there is Points in the Current Section) {
Load the Section to GPU;
Convert Coordinate System for all points;
Render all parts to the map;

Read the Next Section from the Point File;
}

Transfer the Result Map from GPU to CPU;

Figure 4. Algorithm of Processing Sections Using GPU

A Parallel Processing Technique for Large Spatial Data

of the section onto the GPU memory. The TIGER/Line
data use the North America Datum (NAD83). To dis-
play a map in 2-dimensional Cartesian coordinate sys-
tem, the point loaded to the GPU should be converted
from the geodetic coordinate system to the Universal
Transverse Mercator (UTM) coordinate system. The
conversion includes graphics transform such as scale
and translation, in this paper. The converted coordinate
is rendered to the bitmap. The conversion and the ren-
dering are processed in parallel way to increase the
performance using CUDA.

The last step is the transferring the result bitmap
from GPU to CPU by calling CudaGetBitmapFromGPU()
function. The bitmap is the device independent bitmap
(DIB). It is described in the next section.

3.3 Using CUDA

There are several functions designed for using
CUDA in this paper. The Cudalnit() function calls the
cudaGetDeviceProperties() to get the total global mem-
ory in the GPU. The CudaAllocData() function calls
the cudaMalloc() function to allocate the point data and
the result of the coordinate conversion. CudalLoadPart
DataFromCPU() function allocates and copies the part
data. CudaSetBitmapFromCPU() function allocates the
device independent bitmap (DIB) to be used to render
spatial shape and copies the DIB from the CPU to the
allocated DIB. The DIB is a data structure for the
Windows graphics. It contains the device independent
pixel array for bitmap. The size of the bitmap is set
to 1920 x 1080. The DIB is created by calling the
CreateDIBSection() function and is selected to the buf-
fer device context (DC) as the bitmap object. These
functions are called when the document is loaded be-
fore processing sections.

The CudaTransferSectionPointDataToGPU() func-
tion loads the point data to the memory already allo-
cated by the CudaAllocData() function. The main func-
tion is CudaDrawBitmap(). It invokes the CUDA glob-
al functions, such as convert() and render(). Figure 5
shows the pseudo code of the CudaDrawBitmap()
function.

The convert() function is executed in parallel and

converts the coordinate system. Figure 6 shows the

Seunghyun Park, Byoung-Woo Oh

cudaError_t CudaDrawBitmap()
{

// Invokes Convert Function
convert <<< grid, threads >>>(gCountPoint, gBmp, gPoint, gResult, x1, y2,
scale);

// Synchronizes CUDA Device
cudaDeviceSynchronize();

// Invokes Render Function
draw <<< griddraw, threads >>>(gCountPart, gBmp, gResult, gPart,
gStartindex, gStartindexPart, x1, y2, scale);
}

Figure 5. Main Function for Drawing a Map in Parallel

_global__ void convert{size_t N, Pixel bmp[][1920], DPOINT *point, POINT *result,
double x1, double y2, double scale)

size_t i = (gridDim.x * blockldx.y + blockidx.x) * blockDim.x + threadldx.x;

if (i >= N)
return;

DPOINT src = pointfil;
src = gpu_ll2utm(src.x, srey);

resultfilx = (int)((src.x - x1) * scale);
resultfily = (int){{y2 - srcy) * scale);
}

Figure 6. Convert Function for the Coordinate System

_global__ void render(size_t N, Pixel bmp[][1920], POINT *point, int *part)

{
if (i >= N)
return;

size_t start = offset of the first point;
POINT from, to;
to = point[start];

for (int j = 1; j < partfindex of the first point + if; j++) {
from = to;
to = pointfstart + jJ;
Drawline(from.x, from.y, to.x, to.y, bmp, p);
}
}

Figure 7. Render Function for Drawing Lines onto the
DIB

pseudo code of the convert() function.

Before draw DIB in parallel, we should translate co-
ordinate in parallel. Original coordinates consist of
NAD&83 coordinates. It is not useful to express spatial
data on the flat screen. We translate NADS83 coordinate
to TM coordinate. In order to translate coordinates in
parallel, GPU calls convert() function. Execution con-
figuration of function consists of two variables; grid
and threads. Variable “grid” means the number of
blocks which are in CUDA cores and “threads” means
the number of threads which are in a block.

Converted points are drawn on the DIB by calling
render() function in parallel. Figure 7 shows the pseudo
code of the render() function.

The render() function uses similar execution config-
uration which is used for convert() function. The con-

vert() function uses the number of points and the ren-

der() function uses the number of parts. In order to
draw a map, GPU should put pixels and draw lines
on DIB in parallel. There are two CUDA device func-
tions; device DrawLine() and _ device PutPixel().
These functions are invoked by the CudaDrawBitmap()
function. By Calling these functions, we can draw a
map in parallel.

After drawing a map, CUDAGetBitmapFromGPU()
function is called. GPU transfers bitmap from GPU
memory to CPU memory. CPU transfers points of next
section and bitmap from CPU memory to GPU
memory. These processes continue until points of last
section and bitmap are transferred and drawn on GPU.
Finally, a map is shown on screen after drawing points
of last section on DIB in GPU.

4, Experiment and Result

All experiments are performed on a machine
Microsoft Windows 7 with an Intel® Core™ i7-3770
CPU running at 3.40GHz and 16GB of memory. It is
equipped with an NVIDIA GeForce GTX Titan Black
graphic card. It has 2,880 CUDA cores. Each CUDA
core contains arithmetic logic unit(ALU) for calculat-
ing floating point. The memory size of the graphic cars
is 6GB. It is used to loading data for CUDA or graphic
operations. Memory interface width of the graphic card
is 384-bit and memory bandwidth is 336GB per
second. We implement the test system with the CUDA
SDK version 6.5. The storage for the spatial data is
the 256GB SSD.

4,1 Data Set

The data set for experiment is a set of the edges
of United States of America whose layer type is all
lines in the TIGER/Line data. The Alaska and Hawaii
states are excluded only for the shape of the display.
The Tiger/Line data files contain geographic features
such as roads, rivers, zip codes, political boundaries,
legal and statistical geographic areas, etc. The U.S.
Census Bureau developed the TIGER/Line data and
provides files on its website[14]. Figure 8 shows whole
data set. There are 68,967,233 spatial records and
747,302,971 points in the data set.

Figure 8. Edges Data set of the TIGER/Line data

4.2 Implementing the System for the Experiment

In order to implement the experiment, several shape
files were merged into one file. Original shape files
contained whole edges of each state. In order to show
whole edges of the United States of States, we merged
several shape files into one shape file. We divided
edges 4 areas such as western, central, south-eastern
and eastern edges because of the limit size of shape
file. We made spt, prt, and pnt files for showing whole
edges of United States of America. Figure 8 shows
whole edges of United States of America after merging
into a file. In order to gather reliable result, we exe-
cuted experiment 1,000 times. Figure 9 shows the algo-
rithm of processing section using CPU for comparison
with the GPU usage.

Using CPU for Comparison
Read the First Section from the Point File;
while {there is Points in the Current Section) {
Convert Coordinate System for all points;
Render all parts to the map;

Read the Mext Section from the Point File;

Figure 9. Algorithm of Processing Sections Using CPU
for Comparison

Table 1. Result of the Experiments

A Parallel Processing Technique for Large Spatial Data

4.3 Result of the Experiment

To compare the performance, experiment was exe-
cuted on CPU and GPU. Translating coordinates and
drawing a map were executed on CPU, and then exe-
cuted on GPU, and total execution times were compared.
Total time was gathered by adding Read File, Load
to GPU, Convert, Render, Transfer DIB times. Table
1 shows the results for total execution time.

The execution times on CPU were gathered at 146,253.13
ms. The gap of execution time between CPU and GPU
arose at the Convert time and Draw time. The Convert
time on CPU took 85,186.81ms. In contrast, the
Convert time on GPU took 2,824.79ms. The result
means that the conversion of coordinates of points on
GPU is 30.16 times faster than CPU. The gap of the
Render time is much bigger than the Convert time. The
Render time on CPU took 24,679.70ms.

The Render time on GPU took 305.52ms and 1.46ms
to transfer the result DIB. The rendering time on GPU
is 80.40 times faster than CPU. Those two gaps of re-
sult made performance different.

As can be seen in Figure 10, processing large spatial
data on GPU is much faster than executed on CPU.
The gap of performance time arose mainly in the
Convert time and the Render time. The reason why
GPU is faster than CPU is that translating coordinates
and drawing a map was executed in parallel. When
drawing a map on GPU, putting pixels and drawing
lines were processed in parallel on DIB. Though, costs
of drawing a map on CPU increased because putting
pixels and drawing lines sequentially. This could re-
duce much performance time than executing on CPU.
The experiment showed that processing spatial data on
GPU improves performance 3.50 times faster com-

pared to processing on CPU.

5. Conclusion

This paper proposed the parallel processing techni-

CPU/GPU Read File Load to GPU Convert Render Transfer Total
CPU 36,386.62ms - 85,186.81ms 24,679.70ms - 146,253.13ms
GPU 36,386.62ms 2,324.09ms 2,824.79ms 305.52ms 1.46ms 41,842.17ms

Seunghyun Park, Byoung-Woo Oh

150000

140000

% Transfer

IIRender

130000 N Corwert
#Load to GPU
=Read File

120000

110000
50000

EXECUTION TIME(ms)

40000

30000
10000

CPU

Figure 10. Comparison of the execution time between
CPU and GPU

que for large spatial data by using memory mapped
file and GPU. It achieves high speed by handling large
volume of file efficiently and applying parallelism of
GPU on main processes. In general, volumes of spatial
data are large. According to limit size of memory, this
occurred memory problem. In order to solve this prob-
lem this arose when processing large spatial data, this
paper applies memory mapped file to processing large
spatial data. Files which include whole edges of the
United States of America are up to 11GB. These files
can’t be loaded in main memory. Therefore, this paper
makes intersection to handle those files. Spatial records
of whole spatial data divided into several sections.
Sections can be loaded in main memory. In order to
improve performance, this paper applies technique.
Technique is that preloads next section while present
section is processed. Another way to improve perform-
ance is to use GPU for parallelism. In order to process
spatial data in parallel, points of spatial data and bit-
map are copied to GPU memory. In order to improve
performance, GPU memory preloads parts and points
start index. On GPU, coordinates of spatial data are

translated in parallel. For drawing a map, it is needed

to put pixels and draw lines. This paper puts pixels
and draws lines on DIB in parallel. CUDA kernel func-
tions make them available. Those processes enhance
performance. After drawing a map on GPU, Bitmaps
which include map are copied to main memory.
Proposed two ways to process large spatial data enhan-
ces performance. In order to prove that proposed meth-
ods are efficient, the execution time is compared with
the Convert time and the Render time between CPU
and GPU. With respect to performance time, the
Convert time and the Render time which executed on
GPU are much faster than executed on CPU. The pro-
posed technique enhances the performance 350%.
Our future works could focus on combining the tech-
nique with the distributed system using Hadoop.

References

[1] Satish, N; Kim, C; Chhugani, J; Nguyen, A. D;
Lee, V. W; Kim, D; Dubey, P. 2010, Fast sort
on CPUs and GPUs: a case for bandwidth oblivious
SIMD sort, Paper presented at the 2010 ACM
SIGMOD International Conference on Management
of data, June 6-11.

[2] Tanasic, I; Vilanova, L; Jorda, M; Cabezas, J;
Gelado, I; Navarro, N; Hwu, W. 2013, Comparison
based sorting for systems with multiple GPUs,
Paper presented at the 6th Workshop on General
Purpose Processor Using Graphics Processing
Units, March 16.

[3] White, S; Verosky, N; Newhall, T. 2012, A
CUDA-MPI Hybrid Bitonic Sorting Algorithm
for GPU Clusters, Paper presented at 41st interna-
tional Conference on Parallel Processing Work-
shops, September 10-13.

[4] Reis, G; Zeilfelder, F; Hering-Bertram, M; Farin,
G; Hagen, H. 2008, High-Quality Rendering of
Quartic Spline Surfaces on the GPU, IEEE Trans-
actions on Visualization and Computer Graphics,
14(5):1126-1139.

[5] Jalba; Andrei, C; Kustra; Jacek; Telea; Alexandru,
C. 2012, Surface and Curve Skeletonization of
Large 3D Models on the GPU, IEEE Transactions
on Pattern Analysis and Machine Intelligence,
35(6):1495-1508.

(6]

(8]

Brown, J. A; Capson, D. W. 2012, A Framework
for 3D Model-Based Visual Tracking Using a
GPU-Accelerated Particle Filter, IEEE Transactions
on Visualization and Computer Graphics, 18(1):
66-80.

Heidari, H; Chalechale, A; Mohammadabadi, A.
A. 2013, Accelerating of Color Moments and
Texture Features Extraction Using GPU Based
Parallel Computing, Paper presented at the 2013
8th Iranian Conference on Machine Vision and
Image Processing(MVIP), September 10-12.
Berjon, D; Cuevas, C; Moran F; Garcia N. 2012,
Moving Object Detection Strategy for Augmented-
Reality Applications in a GPGPU by Using CUDA,
Paper presetend at the 2012 IEEE International
Conference on Consumer Electronics (ICCE),
January 13-17.

Kim, S; Oh, B. W. 2012, A Parallel Processing
Method for Partial Nodes in R*-tree Using GPU,
The Journal of Korea Spatial Information Society,
20(6):139-144.

Zhang, J. 2011, Speeding Up Large-Scale Geo-
spatial Polygon Rasterization on GPGPUs, Paper
presented at the ACM SIGSPATIAL Second
International Workshop on High Performance and
Distributed Geographic Information Systems,
November 1-4.

[11] Lee, J. I; Oh, B. W. 2009, An Efficient Technique

for Processing of Spatial Data Using GPU, The
Journal of GIS Association of Korea, 17(3):371-379.
Chen, P; Chang, J; Zhuang, Y; Shieh, C; Liang,
T. 2009, Memory-Mapped File Approach for On-
Demand Data Co-allocation on Grids, Paper
presented at CCGRID '09, May 18-21.

13] NVIDIA, 2014, NVIDIA CUDA™ C Programmin
g g

[14]

Guide (Version6.5).
U.S. Census Bureau, 2014, TIGER products
website, [Online] Available: http://www.census.gov/

geo/www/tiger.

Received : 2015.02.06
Revised :2015.04.02
Accepted : 2015.04.08

A Parallel Processing Technique for Large Spatial Data

