DOI QR코드

DOI QR Code

A Parallel Processing Technique for Large Spatial Data

대용량 공간 데이터를 위한 병렬 처리 기법

  • Park, Seunghyun (Dept. of Computer Engineering, Kumoh National Institute of Technology) ;
  • Oh, Byoung-Woo (Dept. of Computer Engineering, Kumoh National Institute of Technology)
  • Received : 2015.02.06
  • Accepted : 2015.04.08
  • Published : 2015.04.30

Abstract

Graphical processing unit (GPU) contains many arithmetic logic units (ALUs). Because many ALUs can be exploited to process parallel processing, GPU provides efficient data processing. The spatial data require many geographic coordinates to represent the shape of them in a map. The coordinates are usually stored as geodetic longitude and latitude. To display a map in 2-dimensional Cartesian coordinate system, the geodetic longitude and latitude should be converted to the Universal Transverse Mercator (UTM) coordinate system. The conversion to the other coordinate system and the rendering process to represent the converted coordinates to screen use complex floating-point computations. In this paper, we propose a parallel processing technique that processes the conversion and the rendering using the GPU to improve the performance. Large spatial data is stored in the disk on files. To process the large amount of spatial data efficiently, we propose a technique that merges the spatial data files to a large file and access the file with the method of memory mapped file. We implement the proposed technique and perform the experiment with the 747,302,971 points of the TIGER/Line spatial data. The result of the experiment is that the conversion time for the coordinate systems with the GPU is 30.16 times faster than the CPU only method and the rendering time is 80.40 times faster than the CPU.

그래픽 처리 장치(GPU)는 내부에 대량의 산술 논리 연산 장치(ALU)를 보유하고 있다. 대량의 ALU는 병렬 처리를 위해 이용될 수 있으므로, GPU는 효율적인 데이터 처리를 제공한다. 공간 데이터를 지도상에 표현하기 위하여 지리학적 좌표가 필요하다. 좌표들은 측지경도와 측지위도의 형태로 저장된다. 데카르트 좌표계로 구성된 지도를 표현하기 위하여 측지경도와 측지위도는 국제 횡단 메르카토르 좌표계(UTM)로 전환돼야 한다. 좌표계 변환 과정과 변환된 좌표를 화면상에 표현하기 위한 렌더링 과정은 복잡한 부동 소수점 계산이 필요하다. 본 논문에서는 성능 향상을 위해 GPU를 활용한 좌표변환 과정과 렌더링 과정을 병렬적으로 처리하는 기법을 제안한다. 대용량 공간 데이터는 파일로 디스크 내에 저장된다. 대용량 공간 데이터를 효율적으로 처리하기 위하여 공간 데이터 파일들을 하나의 대용량 파일로 병합하고 Memory Mapped File 기법을 활용하여 파일에 접근하는 기법을 제안한다. 본 논문에서는 TIGER/Line 데이터를 활용하여 747,302,971개의 점으로 구성된 공간 데이터의 좌표 변환 및 렌더링 처리 과정을 GPU를 활용하여 병렬로 수행하는 연구를 진행한다. CPU를 이용하여 좌표변환 과정 결과와 렌더링 처리 과정 결과를 비교하여 속도 향상 정도에 대한 결과를 제시한다.

Keywords

References

  1. Satish, N; Kim, C; Chhugani, J; Nguyen, A. D; Lee, V. W; Kim, D; Dubey, P. 2010, Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort, Paper presented at the 2010 ACM SIGMOD International Conference on Management of data, June 6-11.
  2. Tanasic, I; Vilanova, L; Jorda, M; Cabezas, J; Gelado, I; Navarro, N; Hwu, W. 2013, Comparison based sorting for systems with multiple GPUs, Paper presented at the 6th Workshop on General Purpose Processor Using Graphics Processing Units, March 16.
  3. White, S; Verosky, N; Newhall, T. 2012, A CUDA-MPI Hybrid Bitonic Sorting Algorithm for GPU Clusters, Paper presented at 41st international Conference on Parallel Processing Workshops, September 10-13.
  4. Reis, G; Zeilfelder, F; Hering-Bertram, M; Farin, G; Hagen, H. 2008, High-Quality Rendering of Quartic Spline Surfaces on the GPU, IEEE Transactions on Visualization and Computer Graphics, 14(5):1126-1139. https://doi.org/10.1109/TVCG.2008.66
  5. Jalba; Andrei, C; Kustra; Jacek; Telea; Alexandru, C. 2012, Surface and Curve Skeletonization of Large 3D Models on the GPU, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6):1495-1508. https://doi.org/10.1109/TPAMI.2012.212
  6. Brown, J. A; Capson, D. W. 2012, A Framework for 3D Model-Based Visual Tracking Using a GPU-Accelerated Particle Filter, IEEE Transactions on Visualization and Computer Graphics, 18(1): 66-80.
  7. Heidari, H; Chalechale, A; Mohammadabadi, A. A. 2013, Accelerating of Color Moments and Texture Features Extraction Using GPU Based Parallel Computing, Paper presented at the 2013 8th Iranian Conference on Machine Vision and Image Processing(MVIP), September 10-12.
  8. Berjon, D; Cuevas, C; Moran F; Garcia N. 2012, Moving Object Detection Strategy for Augmented-Reality Applications in a GPGPU by Using CUDA, Paper presetend at the 2012 IEEE International Conference on Consumer Electronics (ICCE), January 13-17.
  9. Kim, S; Oh, B. W. 2012, A Parallel Processing Method for Partial Nodes in R*-tree Using GPU, The Journal of Korea Spatial Information Society, 20(6):139-144. https://doi.org/10.12672/ksis.2012.20.6.139
  10. Zhang, J. 2011, Speeding Up Large-Scale Geospatial Polygon Rasterization on GPGPUs, Paper presented at the ACM SIGSPATIAL Second International Workshop on High Performance and Distributed Geographic Information Systems, November 1-4.
  11. Lee, J. I; Oh, B. W. 2009, An Efficient Technique for Processing of Spatial Data Using GPU, The Journal of GIS Association of Korea, 17(3):371-379.
  12. Chen, P; Chang, J; Zhuang, Y; Shieh, C; Liang, T. 2009, Memory-Mapped File Approach for On-Demand Data Co-allocation on Grids, Paper presented at CCGRID '09, May 18-21.
  13. NVIDIA, 2014, NVIDIA CUDATM C Programming Guide (Version6.5).
  14. U.S. Census Bureau, 2014, TIGER products website, [Online] Available: http://www.census.gov/geo/www/tiger.

Cited by

  1. Monitoring negotiation strategy for Forestry Voluntary Carbon Market with North Korea vol.24, pp.5, 2015, https://doi.org/10.1007/s41324-016-0052-8