• Title/Summary/Keyword: Spatial Data

Search Result 8,552, Processing Time 0.033 seconds

Parallel Algorithm for Spatial Data Mining Using CUDA

  • Oh, Byoung-Woo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • Recently, there is an increasing demand for applications utilizing maps and locations such as autonomous vehicles and location-based services. Since these applications are developed based on spatial data, interest in spatial data processing is increasing and various studies are being conducted. In this paper, I propose a parallel mining algorithm using the CUDA library to efficiently analyze large spatial data. Spatial data includes both geometric (spatial) and non-spatial (aspatial) attributes. The proposed parallel spatial data mining algorithm analyzes both the geometric and non-spatial relationships between two layers. The experiment was performed on graphics cards containing CUDA cores based on TIGER/Line data, which is the actual spatial data for the US census. Experimental results show that the proposed parallel algorithm using CUDA greatly improves spatial data mining performance.

Detection of Hotspots on Multivariate Spatial Data

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1181-1190
    • /
    • 2006
  • Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. Until now, the echelon analysis has been applied only to univariate spatial data. As a result, it is impossible to detect the hotspots on the multivariate spatial data In this paper, we expand the spatial data to time series structure. And then we analyze them on the time space and detect the hotspots. Echelon dendrogram has been made by piling up each multivariate spatial data to bring time spatial data. We perform the structural analysis of temporal spatial data.

  • PDF

Spatial Clearinghouse Components for OpenGIS Data Providers

  • Oh, Byoung-Woo;Kim, Min-Soo;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.84-88
    • /
    • 1999
  • Recently, the necessity of accessing spatial data from remote computer via network has been increased as distributed spatial data have been increased due to their size and cost. Many methods have been used in recent years for transferring spatial data, such as socket, CORBA, HTTP, RPC, FTP, etc. In this paper, we propose spatial clearinghouse components to access distributed spatial data sources via CORBA and Internet. The spatial clearinghouse components are defined as OLE/COM components that enable users to access spatial data that meet their requests from remote computer. For reusability, we design the spatial clearinghouse with UML and implement it as a set of components. In order to enhance interoperability among different platforms in distributed computing environment, we adopt international standards and open architecture such as CORBA, HTTB, and OpenGIS Simple Features Specifications. There are two kinds of spatial clearinghouse: CORBA-based spatial clearinghouse and Internet-based spatial clearinghouse. The CORBA-based spatial clearinghouse supports COM-CORBA bridge to access spatial data from remote data providers that satisfy the OpenGIS Simple Features Specification for OLE/COM using COM and CORBA interfaces. The Internet-based spatial clearinghouse provides Web-service components to access spatial data from remote data providers using Web-browser.

  • PDF

Study for Spatial Big Data Concept and System Building (공간빅데이터 개념 및 체계 구축방안 연구)

  • Ahn, Jong Wook;Yi, Mi Sook;Shin, Dong Bin
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.43-51
    • /
    • 2013
  • In this study, the concept of spatial big data and effective ways to build a spatial big data system are presented. Big Data is defined as 3V(volume, variety, velocity). Spatial big data is the basis for evolution from 3V's big data to 6V's big data(volume, variety, velocity, value, veracity, visualization). In order to build an effective spatial big data, spatial big data system building should be promoted. In addition, spatial big data system should be performed a national spatial information base, convergence platform, service providers, and providers as a factor of production. The spatial big data system is made up of infrastructure(hardware), technology (software), spatial big data(data), human resources, law etc. The goals for the spatial big data system build are spatial-based policy support, spatial big data platform based industries enable, spatial big data fusion-based composition, spatial active in social issues. Strategies for achieving the objectives are build the government-wide cooperation, new industry creation and activation, and spatial big data platform built, technologies competitiveness of spatial big data.

Comparative Analysis of 3D Spatial Data Models (3차원 공간정보 데이터 모델 비교 분석)

  • Park, Se-Ho;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • Each system should have a suitable data model about their purpose for efficiently managing, analyzing, and manipulating data. And the usable range of application is determined by the data model, and suitable data models are being developed for each application. In GIS, diversity spatial data model is being developed too. The accuracy and update of the spatial data would be important for applying efficient application as well as the data modeling is important as constructing the spatial data structure. Therefore, the purposes of this research are to 1)compare domestic spatial data models with oversea spatial data models about their geometry model, topology model and visualizing method of 3D spatial data 2)to compare the features of the data model by analyzing each data structures. We 3)compare and analyze features of each spatial data models via the quantitative analysis of each spatial data models.

  • PDF

Strategies and Cost Model for Spatial Data Stream Join (공간 데이터스트림을 위한 조인 전략 및 비용 모델)

  • Yoo, Ki-Hyun;Nam, Kwang-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • GeoSensor network means sensor network infra and related software of specific form monitoring a variety of circumstances over geospatial. And these GeoSensor network is implemented by mixing data stream with spatial attribute, spatial relation. But, until a recent date sensor network system has been concentrated on a store and search method of sensor data stream except for a spatial information. In this paper, we propose a definition of spatial data stream and its join strategy model at GeoSensor network, which combine data stream with spatial data. Spatial data stream s defining in this paper are dynamic spatial data stream of a moving object type and static spatial data stream of a fixed type. Dynamic spatial data stream is data stream transmitted by moving sensor as GPS, while static spatial data stream is generated by joining a data stream of general sensor and a relation with location values of these sensors. This paper propose joins of dynamic spatial data stream and static spatial data stream, and cost models estimating join cost. Finally, we show verification of proposed cost models and performance by join strategy.

  • PDF

Non Duplicated Extract Method of Heterogeneous Data Sources for Efficient Spatial Data Load in Spatial Data Warehouse (공간 데이터웨어하우스에서 효율적인 공간 데이터 적재를 위한 이기종 데이터 소스의 비중복 추출기법)

  • Lee, Dong-Wook;Baek, Sung-Ha;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.143-150
    • /
    • 2009
  • Spatial data warehouses are a system managing manufactured data through ETL step with extracted spatial data from spatial DBMS or various data sources. In load period, duplicated spatial data in the same subject are not useful in extracted spatial data dislike aspatial data and waste the storage space by the feature of spatial data. Also, in case of extracting source data on heterogeneous system, as those have different spatial type and schema, the spatial extract method is required for them. Processing a step matching address about extracted spatial data using a standard Geocoding DB, the exiting methods load formal data set. However, the methods cause the comparison operation of extracted data with Geocoding DB, and according to integrate spatial data by subject it has problems which do not consider duplicated data among heterogeneous spatial DBMS. This paper proposes efficient extracting method to integrate update query extracted from heterogeneous source systems in data warehouse constructer. The method eliminates unnecessary extracting operation cost to choose related update queries like insertion or deletion on queries generated from loading to current point. Also, we eliminate and integrate extracted spatial data using update query in source spatial DBMS. The proposed method can reduce wasting storage space caused by duplicate storage and support rapidly analyzing spatial data by loading integrated data per loading point.

  • PDF

Spatial Aggregations for Spatial Analysis in a Spatial Data Warehouse (공간 데이터 웨어하우스에서 공간 분석을 위한 공간 집계연산)

  • You, Byeong-Seob;Kim, Gyoung-Bae;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2007
  • A spatial data warehouse is a system to support decision making using a spatial data cube. A spatial data cube is composed of a dimension table and a fact table. For decision support using this spatial data cube, the concept hierarchy of spatial dimension and the summarized information of spatial fact should be provided. In the previous researches, however, spatial summarized information is deficient. In this paper, the spatial aggregation for spatial summarized information in a spatial data warehouse is proposed. The proposed spatial aggregation is separated of both the numerical aggregation and the object aggregation. The numerical aggregation is the operation to return a numerical data as a result of spatial analysis and the object aggregation returns the result represented to object. We provide the extended struct of spatial data for spatial aggregation and so our proposed method is efficient.

  • PDF

A Spatial Structural Query Language-G/SQL

  • Fang, Yu;Chu, Fang;Xinming, Tang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.860-879
    • /
    • 2002
  • Traditionally, Geographical Information Systems can only process spatial data in a procedure-oriented way, and the data can't be treated integrally. This method limits the development of spatial data applications. A new and promising method to solve this problem is the spatial structural query language, which extends SQL and provides integrated accessing to spatial data. In this paper, the theory of spatial structural query language is discussed, and a new geographical data model based on the concepts and data model in OGIS is introduced. According to this model, we implemented a spatial structural query language G/SQL. Through the studies of the 9-Intersection Model, G/SQL provides a set of topological relational predicates and spatial functions for GIS application development. We have successfully developed a Web-based GIS system-WebGIS-using G/SQL. Experiences show that the spatial operators G/SQL offered are complete and easy-to-use. The BNF representation of G/SQL syntax is included in this paper.

  • PDF

Non-Duplication Loading Method for supporting Spatio-Temporal Analysis in Spatial Data Warehouse (공간 데이터웨어하우스에서 시공간 분석 지원을 위한 비중복 적재기법)

  • Jeon, Chi-Soo;Lee, Dong-Wook;You, Byeong-Seob;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 2007
  • In this paper, we have proposed the non-duplication loading method for supporting spatio-temporal analysis in spatial data warehouse. SDW(Spatial Data Warehouse) extracts spatial data from SDBMS that support various service of different machine. In proposed methods, it extracts updated parts of SDBMS that is participated to source in SDW. And it removes the duplicated data by spatial operation, then loads it by integrated forms. By this manner, it can support fast analysis operation for spatial data and reduce a waste of storage space. Proposed method loads spatial data by efficient form at application of analysis and prospect by time like spatial mining.

  • PDF