• Title/Summary/Keyword: generalized hypergeometric functions

Search Result 111, Processing Time 0.029 seconds

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

SOME APPLICATIONS FOR GENERALIZED FRACTIONAL OPERATORS IN ANALYTIC FUNCTIONS SPACES

  • Kilicman, Adem;Abdulnaby, Zainab E.
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.581-594
    • /
    • 2019
  • In this study a new generalization for operators of two parameters type of fractional in the unit disk is proposed. The fractional operators in this generalization are in the Srivastava-Owa sense. Concerning with the related applications, the generalized Gauss hypergeometric function is introduced. Further, some boundedness properties on Bloch space are also discussed.

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

A GENERALIZATION OF THE LAGUERRE POLYNOMIALS

  • Ali, Asad
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.299-312
    • /
    • 2021
  • The main aim of this paper is to introduce and study the generalized Laguerre polynomials and prove that these polynomials are characterized by the generalized hypergeometric function. Also we investigate some properties and formulas for these polynomials such as explicit representations, generating functions, recurrence relations, differential equation, Rodrigues formula, and orthogonality.

Convolution Properties of Certain Class of Multivalent Meromorphic Functions

  • Vijaywargiya, Pramila
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.713-723
    • /
    • 2009
  • The purpose of the present paper is to introduce a new subclass of meromorphic multivalent functions defined by using a linear operator associated with the generalized hypergeometric function. Some properties of this class are established here by using the principle of differential subordination and convolution in geometric function theory.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

HYPERGEOMETRIC FUNCTIONS AND EICHLER INTEGRALS

  • Lim, Su-Bong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.223-226
    • /
    • 2008
  • Duke and Imamo$\bar{g}$lu express the Eichler integrals associated to modular forms of weight 3 in terms of generalized hypergeometric functions. We extend this result to most general modular forms of weight 3.

  • PDF

LEHMER'S GENERALIZED EULER NUMBERS IN HYPERGEOMETRIC FUNCTIONS

  • Barman, Rupam;Komatsu, Takao
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.485-505
    • /
    • 2019
  • In 1935, D. H. Lehmer introduced and investigated generalized Euler numbers $W_n$, defined by $${\frac{3}{e^t+e^{wt}e^{w^2t}}}={\sum\limits_{n=0}^{\infty}}W_n{\frac{t^n}{n!}}$$, where ${\omega}$ is a complex root of $x^2+x+1=0$. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli and Euler numbers. These concepts can be generalized to the hypergeometric Bernoulli and Euler numbers by several authors, including Ohno and the second author. In this paper, we study more general numbers in terms of determinants, which involve Bernoulli, Euler and Lehmer's generalized Euler numbers. The motivations and backgrounds of the definition are in an operator related to Graph theory. We also give several expressions and identities by Trudi's and inversion formulae.