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¢-EXTENSION OF A GENERALIZATION OF GOTTLIEB
POLYNOMIALS IN THREE VARIABLES

JUNESANG CHOI

Abstract. Gottlieb polynomials were introduced and investigated
in 1938, and then have been cited in several articles. Very recently
Khan and Akhlaq introduced and investigated Gottlieb polynomi-
als in two and three variables to give their generating functions.
Subsequently, Khan and Asif investigated the generating functions
for the g-analogue of Gottlieb polynomials. Very recently, Choi de-
fined a g-extension of the generalized two variable Gottlieb polyno-
mials 4,0?1() and presented their several generating functions. Also,
by modifying Khan and Akhlag’s method, Choi presented a gen-
eralization of the Gottlieb polynomials in m variables to give two
generating functions of the generalized Gottlieb polynomials g (+).
Here, in the sequel of the above results for their possible general
g-extensions in several variables, again, we aim at trying to define a
g-extension of the generalized three variable Gottlieb polynomials
3 (-) and present their several generating functions.

1. Introduction and Preliminaries

Generating functions play an important role in the investigation of
various useful properties of the sequences which they generate. They
are used in finding certain properties and formulas for numbers and
polynomials in a wide variety of research subjects, indeed, in modern
combinatorics. For a systematic introduction to, and several interesting
(and useful) applications of the various methods of obtaining linear,
bilinear, bilateral or mixed multilateral generating functions for a fairly
wide variety of sequences of special functions (and polynomials) in one,
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two and more variables, among much abundant literature, we refer to the
extensive work by Srivastava and Manocha [11]. While concerning some
orthogonal polynomials on a finite or enumerable set of points, Gottlieb
[5] developed the following interesting polynomials (see also [2]; [6]; [7];
[9, p. 303]; [11, pp. 185-186]):

o= £ Q) )

= e_"/\gFl (—n, —x;1;1— e>‘) ,

(1.1)

where 9 F) denotes Gauss’s hypergeometric series whose natural gen-
eralization of an arbitrary number of p numerator and ¢ denominator
parameters (p, ¢ € Ng := NU {0}, and N the set of positive integers) is
called and denoted by the generalized hypergeometric series ,F;; defined
by

AL, ...y Ops _OO (al)n"'(ap)nﬁ
(12) qu |:ﬁ17 ceey Bq? z:| _nz:() (51)71 (/Bq)n n!

= pFy(aq, ..., op; Br, ..., By 2).
Here (), is the Pochhammer symbol defined (for A € C) by

e (n=0)
(M == AMA+D)...(A+n—-1) (neN)

(A +n)
T

and C and Z; denotes the set of nonpositive integers and the set of com-
plex numbers, respectively, and I'()\) is the familiar Gamma function.
Gottlieb [5] presented many interesting identities for his polynomials
©n(z; A), which is denoted by [, (x) in [5], including the following two
generating functions (see also [6]; [7]; [9, p. 303]; [11, pp. 185-186]):

(1.3)
(A e C\Zp)

—z—1

(1) Y e =-b7 (1-te) (] < 1);
n=0
(1.5)
Z ('l:l)'n on(z; )" = (1 - te”‘) o o Fy

n=0
Recently Khan and Akhlaq [6] introduced and investigated Gottlieb
polynomials in two and three variables to give their generating functions.

1; 1—te A
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Subsequently, Khan and Asif [7] investigated the generating functions
for a g-analogue of Gottlieb polynomials. Very recently, Choi [3] defined
a g-extension of Also, by modifying Khan and Akhlaq’s method [6], Choi
[2] presented a generalization of the Gottlieb polynomials in m variables
to give two generating functions of the generalized Gottlieb polynomials
o (+). Basic (or g-) hypergeometric series are useful in a wide variety
of fields including, for example, theory of partitions, number theory,
combinatorial analysis, finite vector space, Lie theory, particle physics,
non-linear electric circuit theory, mechanical engineering, theory of heat
conduction, quantum mechanics, cosmology, and statistics (see [10, 346—
351] and also see the cited references therein). Here, in the sequel of the
above results for their possible general g-extensions in several variables,
again, we aim at trying to define a g-extension of the generalized three
variable Gottlieb polynomials ¢3 (-) and present their several generating
functions.

For our purpose we recall here the following definitions and notations
in the g-theory (see, for example, [4]). The g-shifted factorial (a;q), is
defined by

1 (n=0)
(1.6) (a;q)pn =4 "= k
l1—a (n € N),
I (1-ed')

where a, ¢ € C and it is assumed that a # ¢~™ (m € Np). It is noted that
some other notations that have been used in the literature for the prod-
uct (a;q)y in (1.6) are (a)qn, [a]n, and even (a), when the Pochhammer
symbol (1.3) is not used and the base ¢ is understood.

The g¢-shifted factorial for negative subscript is defined by

1

U0 = T U ag D) A agy "N
which yields
N S /0 L A
(1.8) (a;q)—n = (a qfn;q)n = (q/a;q)n (n € Np).
We also write
(1.9) (a:0)0 =[] (1 - aqk) (a, g €C; |g| < 1).

k=0
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It is noted that, when a # 0 and |g| = 1, the infinite product in (1.9)
diverges. So, whenever (a;q)~ is involved in a given formula, the con-
straint |g| < 1 will be tacitly assumed.

It follows from (1.6), (1.7) and (1.9) that
oy (@9
(1.10) (@:0)s = il
Z being the set of integers, which can be extended to n = a € C as
follows:

(n€Z),

oy (@39)so
(1.11) (a;q)a = g™ Q)

where the principal value of ¢® is taken.
Two easily-verified required identities are given:

(@ eC; gl <1),

(1.12) (674q), = m (—=1)F ¢k (n, ke z)
and
(1.13) (@5 Dtk = (a;q)n (aq";q), (0, k € Z).

The notation [z], is defined by

1) =L =TTl GecigeC\ {1} q £ D).

1-¢ qg—1
A special case of (1.14) when z € N is
n
-1
(15) =g = et (e,

which is called the g-analogue (or g-extension) of n € N, since

3 — |5 n—1 =
313%[71](1—513% (1+qg+--+¢" ") =n

The g-analogue of n! is then defined by

116) = oo
@ =\ ), 1), 2], (1), if neN,

from which the g-binomial coefficient (or the Gaussian polynomial) anal-

ogous to () is defined by

(1.17) ﬁ]::m_hb!(mkeNmO§k§ny
q q’

It is easily seen from (1.6) and (1.17) that
(1.18) (¢:0)n =(1—¢q)" [n],! (ne€Ny).



g-Extension of a generalization of Gottlieb polynomials 331

The g-binomial coefficient in (1.17) can be generalized as follows:

(1.19) mq = [E}ﬂﬁf (@ eC; keNy),

where [a]y., is defined by
(1.20) [a]gr = la], [@=1], - [a—k+1], (a€C;keNy).

The generalized g-binomial coefficient in (1.19) can be expressed in the
following form:

(1.21) [O‘] Dk ok () (aeC ke
kg (@ 9)k
The following notations are also frequently used:
(1.22) (a1, az, -+ am;q), = (a1;9),, (a2;9),, -~ (am; @),
and
(1.23) (a1, ag, -+ am; @) = (015 @) (025 @)+~ (Am3 Q) -

In order to introduce g-binomial theorem, we begin by recalling the
well-known Ramanujan’s 1 ¥;-sum:
(1.24)
oo

a (a2 q)os (L:0) . (@) (254)
Wy (a;biq,2) == Y ( 'Q)’“ 2 = (b ) (q )
(b5 @)k (%000 (2219) o, 030)e (L59)
(lal <15 fa[ > |qf; [b] <1; [b/al <[z] <1).
A special case of (1.24) when b = ¢ yields the g-binomial theorem:

k=—o0

N @Dk g (a219)x -
(1'25) 1‘1’0(@, 34, ) kZ:O (Q§Q)k (Z;q)oo (’CI‘ < 1, ’ ‘< 1).

Two special cases of (1.25) when a = 0 and when z is replaced by
za~! and a — oo yield Euler’s formulas:

O 1
120 2 G~ o A<BEI<D

and

= (D4
(1.27) 7 = (30w (ldl <15 [zl <1),
kZ:O (43 Dk ! !

respectively.
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It is observed that

a ., .
(1.28) lim W’O =lim 180 (¢% 5 ¢,2) = 1F0 (a5 —52) = (1 - 2)™°
Y (o]

(lz| < 1; a € C),

which, by the principle of analytic continuation, holds true for z € C cut
along the positive real axis from 1 to oo, with (1 — 2)~® positive when z
is real and less than 1.

A g-analogue of the classical exponential function e® is defined by

(1.29) eq(2) == Wyt
k=0

and another g-analogue of the classical exponential function e? is defined
by

o k
(1.30) Ey(z) =" ¢"F-02
2 [H

It is easily seen by applying (1.29) and (1.30) that
(1.31) eq(2) Eq(—2) = 1.

We conclude this section by giving a widely-investigated generaliza-
tion @, of the function 1®g(a; —; ¢, z) in (1.25), which is defined by

ai, * -+, Qr;
r Py q4,z| = rq)s(ala s, apy by, e bs?QaZ)

(132) bla Ty bs;

k

— Z (_1)(1—r+s)k q(lfTJrs)(g) (al; Q)k e (ar‘; Q)k z ’
Pt (01:0); -+ (bs3 @)y, (G Dk

provided that the generalized basic (or g-) hypergeometric seriesin (1.32)
converges.

2. Definitions of ¢g-Extensions of Gottlieb and three variable
Gottlieb polynomials

We begin by recalling the definition of a several variable analogue of
the Gottlieb polynomials ¢, (x; \) and one of their generating functions
in [2].
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Definition 1.  An extension of the Gottlieb polynomials ¢, (z; A)
in m variables is defined by

P (T1, T2, ooy Tms AL A2, oy A)
n n—riy Nn—ri—re nN—r1—ra——"Tm-—1
STCICEAD 30 D SRED »
(21) r1=0 ro=0 13=0 rm=0
(=m)ay, Ty (=), - TT7y (1= )"
' 5.1 Hm Kl (n,mGN),
m! ] Li=1 75!

where, for convenience,

(2.2) Om 1= Z Ajand Oy i= i T
j=1

It is noted that the special case m = 1 of (2.1) reduces immediately
to the second one of the Gottlieb polynomials ¢, (x; A) in (1.1) and the
cases of (2.1) when m = 2 and m = 3 correspond with those in [6, 7].

The following generating function for ¢ (1, z2, ..., Tm; A1, A2, ...,
Am) holds true:
(2.3)
Z (Bn s’ (T1, T2, -0y Tm3 AL A2y oy Am) — = (1—te ™)
= n!
t(eM —1) e"om t(erm —1) e=om
Fl()m) ,u,—l']_,...,—.’Em;].; ( ) PEEIE) ( ) )
1—teom 1—teom

where an) [-] denotes one of the Lauricella series in m variables (see [10,
p. 33, Eq. (4)]; see also [8]) defined by

Fl()m) [a, b1, ..., bm; C;T1, -y T
o0 (a’)5 (bl)’f’l . e (bm)r lﬂ{l l‘;ﬁ[‘
( ) Z (C)ém Tl! ’r‘m!

r1=0,...,7m=0

(maX{’1‘1’, SRR ’xm’} < 1) )
and o, O, are given in (2.2).

Khan and Asif [7] defined a g-analogue of Gottlieb polynomials in
(1.1) given below.
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Definition 2. A g-extension of the Gottlieb polynomials ¢, (x; \)
is given as follows:

(25) Pugla:X) = {Ey(-0)" k: ][] e et

By using (1.12), (1.17) and (1.19), Khan and Asif [7] gave another ex-
pression of the g-extension of the Gottlieb polynomials ¢y, (z; A) in (2.5):

20 puleih) = (BN 201 | T T g (1)

Khan and Asif [7] used some of the identities given in Section 1 to
present the following three generating functions for ¢-Gottlieb polyno-
mials in (2.5):

(2.7)

Z nig(z; A) 1" = (1 - tEq(*)‘))_l 121 { qt E, (q_)\)’ q, — (1= E4(=X)) t] ;
n=0 4 ’

(2.8)
ni_o% Puia(@3 ) (q;t;:)n = eq (tBq(=A)) 101 [ qui g, — (1~ Eq()\))t:| :
(2.9)
> e
R L |

We find from Definition 1 that the three variable Gottlieb polynomials
©3 (x1, T2, T3; M1, A2, A3) is given by

@3 (71, 2, 35 M1, A2, A3) = exp (—n (A1 + A2 + A3))
. zn: niil niifrz (_n)T1+T2+T3 (_a;l)’r']_ (_‘T2)T‘2 (_x3)7'3
(2.10) 0 D0 a0 7“1! 7"2! 7“3! (7“1 —+ r9 + T'g)!

. <1 — e)‘l)rl (1 — e)‘Q)T2 (1 - e)‘3)r3 (n € N),
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which is easily rewritten as follows:

9013; (5[31, T2, 563;)\1, )\2, )\3) = exp (—TL ()\1 + )\2 + )\5))

ey XS ST (M) ()

r1=0 ro=0 1r3=0

'(1—6)\1>r1 (1—e>‘2>r2 (1—e>‘3)r3 (n € N).

We define a g-extension of p3 (21, T2, 3; A1, A2, A3).

Definition 3. A g-extension of the three variable Gottlieb poly-
nomials ¢3 (z1, T2, £3; A1, A2, A3) is defined as follows:

Prig (1, T2, 23301, A2y A3) 1= {By (=M1) By (=A2) By (=X3)}"

(212) Zn: ”i ”‘i” [m +:; +T3L Eﬂq [ijq [iﬂq

r1=0 ro=0 1r3=0

QU+ mumimrara—rar

(L =eg (M) (T —eq (A2))"™ (1 —eq (X3))",

which, upon making use of Equations (1.12), (1.17) and (1.21), can be

expressed in the following form:
(2.13)
@3 o (@1, T2, T35 A1, A2, As) = {Bq (=X1) Bq (=X2) Eq (—=X3)}"
g
n—ry n—ry—rg q*(71 22 73)

_ Z”: > 459, gy (@ 59), (477250),, (47 7054),

A0 50 e=o (G Dy 4rggrg (G Dy (GD ey (G,

H{e" =g O} {d" A —eqg (X))} {¢" (1 —eq (X))}

3. Generating functions for gof’“q (1, T2, T3; A1, A2, A3)

Here, we aim at presenting three generating functions for Lpi’“q(wl, 9,
,3; A1, A2, A3) asserted by Theorem below.
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Theorem. Each of the following generating functions for the
go%.q(xl, T9, T3; A1, A2, A3) holds true:
(3.1)
— 3 _ n (@ Eq(=M1) Eq(=X2) Eq(=X3);9)
2 o (@1, 2, w03 Aa M) = G R S ).
i o
Y [gt Eq (=A1) Eq (=A2) Eq (=As) : 1,1,1] :
[a7™ 215 [g=2 0] [q7" 1]
@ tEq (—A2) Eq (—As) (1 — Eq(=A1)), t Eq (A1) Eq (=As) (1 — Eq (—A2)),
tEq (A1) Eq (=A2) (1= Eq(—A3)) >§
(3.2)

5 ¢ 1
Prniq (T1, T2, 35 A1, A2, A3 =
2 ¢ ) @ = @B, () By (%) By (53a)59)

@il ——: o]y [oen]s [oeen];
1:0;0;0 [q . 17 1, 1

} . T T ™

oo

G t Eq (=X2) Eq (=A3) (1 = Eq (A1), tEq (A1) Eq (=X3) (1 = Eq (=A2)),

tEq (*)‘1) Eq (*)‘2) (1 - E, (*/\3)) >§

(3.3)

= (¢%9), 3 n
Z — g (T1, T2, T3; A1, A2, A3)t
— (9), "
(q°t Eq (=M1) Eq (=X2) Eq (=X3);9)
(tEq (=A1) Eq (=A2) Eq(=23)59)

Sl [ L
2:0;0;0 [q, °t Eq (—A1) Eq(—=X2) Eq(—X3) : 1,1,
[ 215 [ 1] g2 1]

) ) )

@ t Eq (=X2) Eq (=A3) (1 = Eq(=A1)), tEq (A1) Eq (=X3) (1 = Eq (=A2)),

tEq (A1) Eq (=A2) (1= Eq(=A3)) )
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g:g,{"'ﬂg(n)(-) is a very generalized Srivastava’s basic multiple

series (see [10, p. 350, Eq. (284)]) defined by

@A:Bl;.A.;B(n) (a): 6,00
c:D’;..;D(M) (e): v, ..., ™|

() : ¢ ... [Ebm):wn)

where ®

5
q; L1y wn)
5

[(d): 8] dm) ;s
(3.4) . » .
>, (aj; el b L TIE b(.");
B 0o H_771 (a; q)7'193-+'“+7'n9§-n) H],1 ( j q)”d)} HJ,1 ( j Q)Tn¢§_7z)
- c . D’ . D) ((n),
1oy =0 Hj:1 (¢5; ‘I)le;+___+rnwj(_n) Hj:1 (d}, q)T15/- rlli=1 (dj 5 q)ﬁ]&(_n)
3 ;
w;‘l IZ‘n

@D (@G D

where the arguments x1, ..., Ty, the complex parameters

; (k) (k)
a;j, j=1,... A; b7 j=1,..., B";
(3.5) {j J

¢, j=1,....C; d, j=1,...
and the associated coefficients

oM, j=1,...,4 ¢ =1, B¥,
(36) {ja] ’ 77¢J7j ’ [t B

o, =106 j=1,..., DM k=1,...

are so constrained that the multiple series (3.4) converges.

Proof. We will prove Equation (3.1) only. The other two Equations
(3.2) and (3.3) will be verified in a similar way. For convenience, let the
left hand side of (3.1) be denoted by L. By using Equation (2.13), we
obtain

oo
L= {Eq(=\1) Eq(=X2) Bq (=23)}"
n=0
. n—mrq—r — ’7‘1+’V‘2+’f‘3 —_ — — 1 —r
. Xn: ”isl 21: t ( : ) ((1‘ n§Q)r1+T2+r3 (q xl;q)’"l (q I2;q)7"2 ((1 lS;q)"S
7120 190 1520 (G Dy frggrg (G Dry (GD ey (G,

H{e" =g O} {d" @ —eqg (A2} {¢" (1 —eqg (X))} "

Employing a formal manipulation of double series (see [1]):

(3.7) SO AU =D Al +1),

n=0 =0 n=0 (=0
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we have

A1) Eq (=X2) Eq (=2s)}"

71+7‘22+73) (

||M8

n—r

5 "), e, @), (@77a),, (a759),,
0 (GD ) rrgrs (@GD,, (@ q)r2 (©a),,

AT = e O} (g (= e )} a7 (L= e 0} £

N

g

M§

By making a repeated use of (3.7), we get

= Z Z Z Z Ey(=X2) Eg (—X3)}rtratrs

2=0 r

) (g 0) e (@7 750), (077%50)
(6D, 4ryirg (@D, (@9),, (@9),,

. {qn+r1+rz+rs (1 — e, ()\1))}’"1 {qn+r1+T2+T3 (1 — ey ()\2))}’“2

. {q"+7"1+7"2+7"3 (1 —eq ()\3))}T3 tn+?"1+?"2+7“3_

T2 (q7ZJ ; q) T3

1

Considering Equations (1.12) and (1.13), we find
(3:8)
(qfn TL—T2— 'rqu)
_ (& Dntritratrs (_1)T1+T2+T3 q(rl+T22+T3)*(n+r1+T2+T3>(T1+T2+T3)
(4 O)n
_ (@ @D ri4ratrs (q
(4 9)n

r1+r2+73

r1+ro+r3+1,
’ q)n (-1 +ra+trs q(T1+T22+r3)*(n+T1 +ra+r3)(ri+r2+rs)

Applying the formula (3.8), we obtain

[e o]

r— Z (¢

—z1 —x3

14y, (@7759),, (@7354),,

o (%49),, (q), z(q;q)r3
At Eq (—A1) Eq(—A2) Eq(=A3) (1 —eq (A1)}
(3.9) AL Eq (M) Eq (=X2) Eq(=23) (1 —eq (X))}
)

AL Eq (=M1) Eq (=X2) Eq (—=Xs) (1 —eq (A3))}"
o (qT1+7’2+7"3+1’q)

. n=0 (@ Dn § {t Eq (A1) Ey (—A2) E, (_)\3)}71 .
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Using the g¢-binomial theorem (1.25) for the last summation and the
identity (1.10), we find
>
n=0
310y _ (@TEITIEE, (“M) Bq (=X2) Bq (“Xa)i 0).
(tEq (=21) Eq (=A2) Eq(=X3); (I)oc

_ (gt Eq (A1) Eq(=X2) Eq(=X3); @),
(@t Eq (=A1) Eq (=X2) Eq(=X3); q) (t Eq (—A1) Eq (=X2) Eq (=A3); (I)Oo ’

r1t+ra2+raz+1.
: (a10) e {15, (-A0) By (—ha) By (Ao}

r1+ro+r3

Now, substituting (3.10) for the last summation in (3.9) and using the
identity (1.31), we obtain
(3.11)
£ (@t Bq (ZA1) Bq(=A2) Eg (=Xs) 5 0)oe
(t Eq (A1) Eq (=22) Eq (=X3); @)
i (¢"59),, (a77%49),, (¢ 7%54),,
(at Eq (=A1) Eq (=A2) Eq(=A3); q)

r1,r2,m73=0

r1+retrs

At Eq (=X2) B (=As) (1 = Eq (=A))}"™ {tEq (=M1) Eq (—Xs) (1 — Eq (—X2))}"
(4:9),, (%9),,

AtE (A1) B (=X2) (1 = By (=As))}"™
(4:9),, '

Finally, by considering the generalized multiple series in (3.4), the
last resulting triple series (3.11) corresponds with Equation (3.1). The
other two Equations (3.2) and (3.3) will be proved by a similar argument.
This completes the proof of Theorem. O
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