• Title/Summary/Keyword: general mathematics

Search Result 1,664, Processing Time 0.024 seconds

SOME RESULTS ON CONVERGENCES IN FUZZY METRIC SPACES AND FUZZY NORMED SPACES

  • Cho, Kyugeun;Lee, Chongsung
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.185-199
    • /
    • 2020
  • In this paper, we introduce the definitions of sp-convergent sequence in fuzzy metric spaces and fuzzy normed spaces. We investigate relations of convergence, sp-convergence, s-convergence and st-convergence in fuzzy metric spaces and fuzzy normed spaces. We also study sp-convergence, s-convergence and st-convergence using the sub-sequence of convergent sequence in fuzzy metric spaces and fuzzy normed spaces. Stationary fuzzy normed spaces are defined and investigated. We finally define sp-closed sets, s-closed sets and st-closed sets in fuzzy metric spaces and fuzzy normed spaces and investigate relations of them.

A q-QUEENS PROBLEM V. SOME OF OUR FAVORITE PIECES: QUEENS, BISHOPS, ROOKS, AND NIGHTRIDERS

  • Chaiken, Seth;Hanusa, Christopher R.H.;Zaslavsky, Thomas
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1407-1433
    • /
    • 2020
  • Parts I-IV showed that the number of ways to place q nonattacking queens or similar chess pieces on an n × n chessboard is a quasipolynomial function of n whose coefficients are essentially polynomials in q. For partial queens, which have a subset of the queen's moves, we proved complete formulas for these counting quasipolynomials for small numbers of pieces and other formulas for high-order coefficients of the general counting quasipolynomials. We found some upper and lower bounds for the periods of those quasipolynomials by calculating explicit denominators of vertices of the inside-out polytope. Here we discover more about the counting quasipolynomials for partial queens, both familiar and strange, and the nightrider and its subpieces, and we compare our results to the empirical formulas found by Kotššovec. We prove some of Kotššovec's formulas and conjectures about the quasipolynomials and their high-order coefficients, and in some instances go beyond them.

Thermoelastic solutions for annular disks with arbitrary variable thickness

  • Zenkour, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.515-528
    • /
    • 2006
  • This article presents a unified analytical solution for the analysis of thermal deformations and stresses in elastic annular disks with arbitrary cross-sections of continuously variable thickness. The annular disk is assumed to be under steady heat flow conditions, in which the inner surface of the annular disk is at an initial temperature and the outer surface at zero temperature. The governing second-order differential equation is derived from the basic equations of the thermal annular disks and solved with the aid of some hypergeometric functions. Numerical results for thermal stresses and displacement are given for various annular disks. These disks include annular disks of thickness profiles in the form of general parabolic and exponential functions. Additional annular disks with nonlinearly variable thickness and uniform thickness are also included.

STOCHASTIC FRAGMENTATION AND SOME SUFFICIENT CONDITIONS FOR SHATTERING TRANSITION

  • Jeon, In-Tae
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.543-558
    • /
    • 2002
  • We investigate the fragmentation process developed by Kolmogorov and Filippov, which has been studied extensively by many physicists (independently for some time). One of the most interesting phenomena is the shattering (or disintegration of mass) transition which is considered a counterpart of the well known gelation phenomenon in the coagulation process. Though no masses are subtracted from the system during the break-up process, the total mass decreases in finite time. The occurrence of shattering transition is explained as due to the decomposition of the mass into an infinite number of particles of zero mass. It is known only that shattering phenomena occur for some special types of break-up rates. In this paper, by considering the n-particle system of stochastic fragmentation processes, we find general conditions of the rates which guarantee the occurrence of the shattering transition.

A VARIANT OF THE GENERALIZED VECTOR VARIATIONAL INEQUALITY WITH OPERATOR SOLUTIONS

  • Kum, Sang-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.665-673
    • /
    • 2006
  • In a recent paper, Domokos and $Kolumb\'{a}}n$ [2] gave an interesting interpretation of variational inequalities (VI) and vector variational inequalities (VVI) in Banach space settings in terms of variational inequalities with operator solutions (in short, OVVI). Inspired by their work, in a former paper [4], we proposed the scheme of generalized vector variational inequality with operator solutions (in short, GOVVI) which extends (OVVI) into a multivalued case. In this note, we further develop the previous work [4]. A more general pseudomonotone operator is treated. We present a result on the existence of solutions of (GVVI) under the weak pseudomonotonicity introduced in Yu and Yao [8] within the framework of (GOVVI) by exploiting some techniques on (GOVVI) or (GVVI) in [4].

A NON-COMPACT GENERALIZATION OF HORVATH'S INTERSECTION THEOREM$^*$

  • Kim, Won-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1995
  • Ky Fan's minimax inequality is an important tool in nonlinear functional analysis and its applications, e.g. game theory and economic theory. Since Fan gave his minimax inequality in [2], various extensions of this interesting result have been obtained (see [4,11] and the references therein). Using Fan's minimax inequality, Ha [6] obtained a non-compact version of Sion's minimax theorem in topological vector spaces, and next Geraghty-Lin [3], Granas-Liu [4], Shih-Tan [11], Simons [12], Lin-Quan [10], Park-Bae-Kang [17], Bae-Kim-Tan [1] further generalize Fan's minimax theorem in more general settings. In [9], using the concept of submaximum, Komiya proved a topological minimax theorem which also generalized Sion's minimax theorem and another minimax theorem of Ha in [5] without using linear structures. And next Lin-Quan [10] further generalizes his result to two function versions and non-compact topological settings.

  • PDF

A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES

  • Park, Seh-Ie
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.803-829
    • /
    • 1998
  • We give general fixed point theorems for compact multimaps in the "better" admissible class $B^{K}$ defined on admissible convex subsets (in the sense of Klee) of a topological vector space not necessarily locally convex. Those theorems are used to obtain results for $\Phi$-condensing maps. Our new theorems subsume more than seventy known or possible particular forms, and generalize them in terms of the involving spaces and the multimaps as well. Further topics closely related to our new theorems are discussed and some related problems are given in the last section.n.

  • PDF

GENERALIZED BROWNIAN MOTIONS WITH APPLICATION TO FINANCE

  • Chung, Dong-Myung;Lee, Jeong-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.357-371
    • /
    • 2006
  • Let $X\;=\;(X_t,\;t{\in}[0, T])$ be a generalized Brownian motion(gBm) determined by mean function a(t) and variance function b(t). Let $L^2({\mu})$ denote the Hilbert space of square integrable functionals of $X\;=\;(X_t - a(t),\; t {in} [0, T])$. In this paper we consider a class of nonlinear functionals of X of the form F(. + a) with $F{in}L^2({\mu})$ and discuss their analysis. Firstly, it is shown that such functionals do not enjoy, in general, the square integrability and Malliavin differentiability. Secondly, we establish regularity conditions on F for which F(.+ a) is in $L^2({\mu})$ and has its Malliavin derivative. Finally we apply these results to compute the price and the hedging portfolio of a contingent claim in our financial market model based on a gBm X.

An Implementation of Web-based Stepwise Learning System for the Mathematical Problems

  • Kwon, Soon-Kak;Cho, Woo-Je;Kim, Tai-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.630-637
    • /
    • 2003
  • This study is designed to use the stepwise learning system for solving learner-oriented problem on the Web, which can help learners probe studying targets and contents of mathematics as well as search for a study-related materials. The study provides a Web-based Courseware design model based on the general multimedia systematic professor design model. It develops a program for remote lecture that can solve problems through interaction among a professor and the other learners. It also implements a remote teaming system for real-time environment of mathematical problems oriented by the learner. The system designed either as a Web-based mathematical Courseware or as a text mode has the purpose of providing a Web-based stepwise learning system for solving mathematical problems oriented by the learner.

  • PDF

ON SOME GENERALIZATIONS OF CLOSED SUBMODULES

  • DURGUN, YILMAZ
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1549-1557
    • /
    • 2015
  • Characterizations of closed subgroups in abelian groups have been generalized to modules in essentially dierent ways; they are in general inequivalent. Here we consider the relations between these generalizations over commutative rings, and we characterize the commutative rings over which they coincide. These are exactly the commutative noetherian distributive rings. We also give a characterization of c-injective modules over commutative noetherian distributive rings. For a noetherian distributive ring R, we prove that, (1) direct product of simple R-modules is c-injective; (2) an R-module D is c-injective if and only if it is isomorphic to a direct summand of a direct product of simple R-modules and injective R-modules.