References
- Comm. Math. Phys. v.65 Convergnece to equilibrium in a system of reacting polymers M. Aizenman;T. Bak https://doi.org/10.1007/BF01197880
- Bernoulli v.5 Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation) : A Review of the Mean-Field Theory for Frobabilists D. Aldous https://doi.org/10.2307/3318611
- Comm. Math. Phys. v.104 The Becker-Doring cluster equations: Basic properties and asymptotic behavior of Solutions J. M. Ball;J. Carr;O. Penrose https://doi.org/10.1007/BF01211070
- Probab. Theory Related Fields v.117 A fragmentation precess connected to Brownian motion J. Bertoin https://doi.org/10.1007/s004400050008
- Phys. Rev. E. v.57 Universal features of the off-equilibrium fragmentation with Gaussian dissipation R. Botet;M. Ploszajczak https://doi.org/10.1103/PhysRevE.57.7305
- Phys. Rev. Lett. v.60 Scaling theory of fragmentation Z. Cheng;S. Redner https://doi.org/10.1103/PhysRevLett.60.2450
- J. Theoret. Probab. v.12 The equilibrium behavior of reversible coagulation fragmentation processes R. Durrett;B. Granovsky;S. Gueron https://doi.org/10.1023/A:1021682212351
- Phys. Rev. A. v.41 Rate equations and scaling for fragmentation with mass loss B. Edwards;M. Cai;H. Han https://doi.org/10.1103/PhysRevA.41.5755
- Theory Probab. Appl. v.6 On the distribution of the sizes of particles which undergo slitting I. Filippov https://doi.org/10.1137/1106036
- Comm. Math. Phys. v.194 Existence of gelling solutions for coagulation-fragmentation equations I. Jeon https://doi.org/10.1007/s002200050368
- J. Statist. Phys. v.96 no.5/6 Spouge's conjecture on complete and instantaneous gelation I. Jeon https://doi.org/10.1023/A:1004640317274
- Ann. Probab. v.28 Size of the largest cluster under Zero-range invariant measures I. Jeon;P. March;B. Pittel https://doi.org/10.1214/aop/1019160330
- Akad. Sci. URSS (N.S.) v.31 Uber das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstuckelung A. N. Kolmogorov
- J. Phys. v.A31 Distribution of the number of fragmentations in continuous fragmentation M. Lensu https://doi.org/10.1088/0305-4470/31/26/010
- Lectures on the coupling method T. Lindvall
- Phys. Rev. Lett. v.58 "Shattering" transition in fragmentation E. McGrady;R. Ziff https://doi.org/10.1103/PhysRevLett.58.892
- Ann. Appl. Probab. v.9 Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent J. R. Norris https://doi.org/10.1214/aoap/1029962598
- J. Phys. v.A24 New solutions to the fragmentation R. Ziff https://doi.org/10.1088/0305-4470/24/12/020
Cited by
- CONSERVATIVE AND SHATTERING SOLUTIONS FOR SOME CLASSES OF FRAGMENTATION MODELS vol.14, pp.04, 2004, https://doi.org/10.1142/S0218202504003325
- ENDOGENOUS DOWNWARD JUMP DIFFUSION AND BLOW UP PHENOMENA BEFORE CRASH vol.47, pp.6, 2010, https://doi.org/10.4134/BKMS.2010.47.6.1105
- Different aspects of a random fragmentation model vol.116, pp.3, 2006, https://doi.org/10.1016/j.spa.2005.11.001
- Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss vol.293, pp.2, 2004, https://doi.org/10.1016/j.jmaa.2004.01.028
- On conservativity and shattering for an equation of phytoplankton dynamics vol.327, pp.11, 2004, https://doi.org/10.1016/j.crvi.2004.07.017
- Shattering and non-uniqueness in fragmentation models—an analytic approach vol.222, pp.1-2, 2006, https://doi.org/10.1016/j.physd.2006.07.025
- Loss of mass in deterministic and random fragmentations vol.106, pp.2, 2003, https://doi.org/10.1016/S0304-4149(03)00045-0
- Analytic Fragmentation Semigroups and Classical Solutions to Coagulation–fragmentation Equations — a Survey pp.1439-7617, 2019, https://doi.org/10.1007/s10114-018-7435-9