DOI QR코드

DOI QR Code

A LOCAL-GLOBAL PRINCIPLE FOR REPRESENTATIONS OF BINARY FORMS BY CERTAIN QUINARY FORMS

  • Published : 2002.07.01

Abstract

In this article, we prove a certain local-global principle for representation of binary forms by an infinite family of quinary positive integral quadratic forms.

Keywords

References

  1. Rational quadratic forms J. W. S. Cassels
  2. Japan. J. Math. v.22 Ternary universal integral quadratic forms over real quadratic fields W.-K. Chan;M.-H. Kim;S. Raghavan
  3. Acta Arith. v.89 Effective versoin of Tartakowsky's Theorem J. S. Hsia;M. I. Icaza
  4. Invent. Math. v.129 Almost strong approximations for definite quadratic spaces J. S. Hsia;M. Jochner https://doi.org/10.1007/s002220050169
  5. J. Reine. Angew. Math v.301 Representations of positive definite quadratic forms J. S. Hsia;Y. Kitaoka;M. Kneser
  6. J. Number Theory v.44 Primitive representations by unimodular quadratic forms D. G. James https://doi.org/10.1006/jnth.1993.1060
  7. Math. Z. v.215 Representations by unimodular Z-lattices D. G. James https://doi.org/10.1007/BF02571724
  8. Contemp. Math. v.249 On the representations of positive definite quadratic forms, Integral Quadratic Forms and Lattices M. Jochner;M.-H. Kim(et al.)(ed.) https://doi.org/10.1090/conm/249/03749
  9. Nagoya Math. J. v.87 Modular forms of degree n and representation by quadratic forms Ⅱ Y. Kitaoka
  10. Nagoya Math. J. v.115 Some remarks on representations of positive definite quadratic forms Y. Kitaoka
  11. Nagoya Math. J. v.133 The minimum and the primitive representation if positive definite quadratic forms Y. Kitaoka
  12. Contemp. Math. v.249 2-universal positive definite integral quinary quadratic forms, Integral Quadratic Forms and Lattices B. M. Kim;M.-H. Kim;B.-K. Oh;M.-H. Kim(et al)(ed.) https://doi.org/10.1090/conm/249/03747
  13. J. Number Theory v.89 Representations of binary forms by certain quinary positive integral quadratic forms M.-H. Kim;J. K. Koo;B.-K. Oh https://doi.org/10.1006/jnth.2000.2631
  14. Ramanujan J. v.1 2-uiversal positive definite integral quinary diagnal quadratic forms B. M. Kim;M.-H. Kim;S. Raghavan https://doi.org/10.1023/A:1009797524602
  15. J. Korean Math, Soc. v.33 A lower bound for the number of squares whose sumrepresents integral quadratic forms M.-H. Kim;B.-K. Oh
  16. J. Number Theory v.63 Representations of positive definite senary integral quadratic forms by a sum of squares M.-H. Kim;B.-K. Oh https://doi.org/10.1006/jnth.1997.2069
  17. Proc. Amer. Math. Soc. v.128 Universal Z-lattices of minimal ranks B.-K. Oh https://doi.org/10.1090/S0002-9939-99-05254-5
  18. Extension of a problem of Kloosterman to lower ranks B.-K. Oh
  19. Introduction to quadratic forms O. T. O.'Meara
  20. Amer. J. Math. v.80 The integral representations if quadratic forms over local fields O. T. O'Meara https://doi.org/10.2307/2372837
  21. Math. Z. v.56 Bemerkungen uber die Verteilung der quadratischen Reste O. Perron https://doi.org/10.1007/BF01175029
  22. Isv. Akad. Nauk SSSR v.7 Die Gesamtheit der Zahlen, die durch eine positive quadratische Form $F(x_1,...,x_s)(s{\ge}4)$ darstellbar sind W. Tartakowsky
  23. Philos. Trans. Roy. Soc. London Ser. A v.253 Quadratic diophantine equations G. L. Watson https://doi.org/10.1098/rsta.1960.0023