References
- Rational quadratic forms J. W. S. Cassels
- Japan. J. Math. v.22 Ternary universal integral quadratic forms over real quadratic fields W.-K. Chan;M.-H. Kim;S. Raghavan
- Acta Arith. v.89 Effective versoin of Tartakowsky's Theorem J. S. Hsia;M. I. Icaza
- Invent. Math. v.129 Almost strong approximations for definite quadratic spaces J. S. Hsia;M. Jochner https://doi.org/10.1007/s002220050169
- J. Reine. Angew. Math v.301 Representations of positive definite quadratic forms J. S. Hsia;Y. Kitaoka;M. Kneser
- J. Number Theory v.44 Primitive representations by unimodular quadratic forms D. G. James https://doi.org/10.1006/jnth.1993.1060
- Math. Z. v.215 Representations by unimodular Z-lattices D. G. James https://doi.org/10.1007/BF02571724
- Contemp. Math. v.249 On the representations of positive definite quadratic forms, Integral Quadratic Forms and Lattices M. Jochner;M.-H. Kim(et al.)(ed.) https://doi.org/10.1090/conm/249/03749
- Nagoya Math. J. v.87 Modular forms of degree n and representation by quadratic forms Ⅱ Y. Kitaoka
- Nagoya Math. J. v.115 Some remarks on representations of positive definite quadratic forms Y. Kitaoka
- Nagoya Math. J. v.133 The minimum and the primitive representation if positive definite quadratic forms Y. Kitaoka
- Contemp. Math. v.249 2-universal positive definite integral quinary quadratic forms, Integral Quadratic Forms and Lattices B. M. Kim;M.-H. Kim;B.-K. Oh;M.-H. Kim(et al)(ed.) https://doi.org/10.1090/conm/249/03747
- J. Number Theory v.89 Representations of binary forms by certain quinary positive integral quadratic forms M.-H. Kim;J. K. Koo;B.-K. Oh https://doi.org/10.1006/jnth.2000.2631
- Ramanujan J. v.1 2-uiversal positive definite integral quinary diagnal quadratic forms B. M. Kim;M.-H. Kim;S. Raghavan https://doi.org/10.1023/A:1009797524602
- J. Korean Math, Soc. v.33 A lower bound for the number of squares whose sumrepresents integral quadratic forms M.-H. Kim;B.-K. Oh
- J. Number Theory v.63 Representations of positive definite senary integral quadratic forms by a sum of squares M.-H. Kim;B.-K. Oh https://doi.org/10.1006/jnth.1997.2069
- Proc. Amer. Math. Soc. v.128 Universal Z-lattices of minimal ranks B.-K. Oh https://doi.org/10.1090/S0002-9939-99-05254-5
- Extension of a problem of Kloosterman to lower ranks B.-K. Oh
- Introduction to quadratic forms O. T. O.'Meara
- Amer. J. Math. v.80 The integral representations if quadratic forms over local fields O. T. O'Meara https://doi.org/10.2307/2372837
- Math. Z. v.56 Bemerkungen uber die Verteilung der quadratischen Reste O. Perron https://doi.org/10.1007/BF01175029
-
Isv. Akad. Nauk SSSR
v.7
Die Gesamtheit der Zahlen, die durch eine positive quadratische Form
$F(x_1,...,x_s)(s{\ge}4)$ darstellbar sind W. Tartakowsky - Philos. Trans. Roy. Soc. London Ser. A v.253 Quadratic diophantine equations G. L. Watson https://doi.org/10.1098/rsta.1960.0023