• Title/Summary/Keyword: general failure model

Search Result 246, Processing Time 0.025 seconds

Design of geocell reinforcement for supporting embankments on soft ground

  • Latha, G. Madhavi
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-130
    • /
    • 2011
  • The methods of design available for geocell-supported embankments are very few. Two of the earlier methods are considered in this paper and a third method is proposed and compared with them. In the first method called slip line method, plastic bearing failure of the soil was assumed and the additional resistance due to geocell layer is calculated using a non-symmetric slip line field in the soft foundation soil. In the second method based on slope stability analysis, general-purpose slope stability program was used to design the geocell mattress of required strength for embankment. In the third method proposed in this paper, geocell reinforcement is designed based on the plane strain finite element analysis of embankments. The geocell layer is modelled as an equivalent composite layer with modified strength and stiffness values. The strength and dimensions of geocell layer is estimated for the required bearing capacity or permissible deformations. These three design methods are compared through a design example. It is observed that the design method based on finite element simulations is most comprehensive because it addresses the issue of permissible deformations and also gives complete stress, deformation and strain behaviour of the embankment under given loading conditions.

Forcing a Closer Fit in the Lower Tails of a Distribution for Better Estimating Extremely Small Percentiles of Strengths

  • Guess, Frank-M.;Leon, Ramon-V.;Chen, Weiwei;Young, Timothy-M.
    • International Journal of Reliability and Applications
    • /
    • v.5 no.4
    • /
    • pp.129-145
    • /
    • 2004
  • We use a novel, forced censoring technique that closer fits the lower tails of strenth distributions to better estimate extremly smaller percentiles for measuring progress in continuous improvement initiatives. These percentiles are of greater interest for companies, government oversight organizations, and consumers concerned with safely and preventing accidents for many products in general, but specifically for medium density fiberboard (MDF). The international industrial standard for MDF for measuring highest quality is internal bond (IB, also called tensile strengh) and its smaller percentiles are crucial, especially the first percentile and lower ones. We induce censoring at a value just above the median to weight lower observations more. Using this approach, we have better fits in the lower tails of the distribution, where these samller percentiles are impacted most. Finally, bootstrap estimates of the small percentiles are used to demonstrate improved intervals by our forced censoring approach and the fitted model. There was evidence from the study to suggest that MDF has potentially different failure modes for early failures. Overall, our approach is parsimonious and is suitable for real time manufacturing settings. The approach works for either strengths distributions or lifetime distributions.

  • PDF

Effect of creep on behaviour of steel structural assemblies in fires

  • Cesarek, Peter;Kramar, Miha;Kolsek, Jerneja
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.423-435
    • /
    • 2018
  • There are presently two general ways of accounting for hazardous metal creep in structural fire analyses: either we incorporate creep strains implicitly in hardening model ('implicit-creep' plasticity) or we account for creep explicitly ('explicit-creep' plasticity). The first approach is simpler and usually used for fast engineering applications, e.g., following proposals of EN 1993-1-2. Prioritizing this approach without consideration of its limitations, however, may lead to significant error. So far the possible levels of such error have been demonstrated by few researchers for individual structural elements (i.e., beams and columns). This paper, however, presents analyses also for selected beam-girder assemblies. Special numerical models are developed correspondingly and they are validated and verified. Their important novelty is that they do not only account for creep in individual members but also for creep in between-member connections. The paper finally shows that outside the declared applicability limits of the implicit-creep plasticity models, the failure times predicted by the applied alternative explicit-creep models can be as much as 40% shorter. Within the limits, however, the discrepancies might be negligible for majority of cases with the exception of about 20% discrepancies found in one analysed example.

The reason of cracking in bottom gallery of SefidRud Buttress Dam and earthquake and post earthquake performance

  • Mirzabozorg, Hasan;Ghaemian, Mohsen;Roohezamin, Amirhossein
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.103-124
    • /
    • 2019
  • Present study concerns the safety evaluation of SefidRud dam's block No. 18 regarding probable crack propagation in the foundation gallery under a MCE record. Accordingly, a 3D finite element model of the block in companion with the reservoir and the foundation is modeled. All the associated thermal and structural parameters are derived via calibration with the records of thermometers and pendulums installed inside the dam body. The origination of the cracks and their whereabouts are determined by primary thermal and static analyses and through a linear dynamic analysis the potential failure zone and their extent and level are studied. The foundation gallery is the most probable zone among the other intensive tensile stress area to compromise the dam stability. Therefore, the nonlinear analysis of this risky region is inevitable. The results depict the permissible expansion of the cracks inside the gallery even under another future earthquake in MCE level. As a consequence, the general dam performance is assessed safe in spite of the seepage flow rate growth from the gallery fractures.

A Study on the Life Cycle Establishment and Improvement of Main Parts for Electric Locomotive (전기기관차 주요부품의 수명주기 설정 및 개선방안에 관한 연구)

  • Lee, Doek Koo;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • The 8200-unit electric locomotive, which is a high-efficiency multipurpose electric locomotive, is a German model, namely BR152 series ES64F, and it is manufactured to suit the operating conditions in Korea. Since 2003, 83 locomotives have been introduced in Korea, and they have been operating in the general railway sector for both passenger and freight transport. Although more than 15 years have passed since their first introduction, owing to the characteristics of vehicles introduced overseas, responding promptly to failures has been difficult owing to problems related to factors such as transfer of technology and procurement of parts for maintenance. Furthermore, there have been difficulties in operating the locomotives on the basis of the manufacturer-recommended time-between-overhaul (TBO) cycle. Therefore, a new TBO should be determined. To support the development of a reliability-based maintenance system, this study conducted a reliability and TBO analysis by using failure data obtained from KOVIS, and future management measures are presented.

An Analysis of Potential Customer Satisfaction Improvement Index of Smart Phone by Usage Characteristics (스마트폰 사용 특성별 잠재적 고객만족 개선지수 분석)

  • Hong, Jung-Sik;Lee, Sang Cheon;Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.56-64
    • /
    • 2020
  • This paper is a follow up to the previous study which reveals that smartphone users are divided into three subcategories according to their usage characteristics. In this paper, these groups are called as 'general', 'entertainment', and 'work-assistant', taking into account their respective characteristics. The 'general' is a group whose smartphone usage characteristics are not focused on a specific purpose, the 'entertainment' is focused on music, internet, SNS, picture, and e-banking, and the 'work-assistant' is on work, GPS, diary. Inter-relation between the importance and satisfaction for the purchase determinants to the groups is investigated. In addition, Kano analysis of quality attributes is also performed, which includes quality type, satisfaction/dissatisfaction index, and PCSI (Potential Customer Satisfaction Improvement) index. The analysis result are as follows. Firstly, inter-relation between importance and satisfaction differs by user group. 'Internet', 'Ease of use', and 'Performance' purchase determinants are evaluated as competitive determinants in 'work-assistant' user group. Secondly Kano quality types of quality characteristics also differs by user group. 'Application' was classified as an attractive (A) types to 'entertainment' group and so on. 'Internet' 'Failure/Bug', 'Touch response rate' and 'Charging' are located in 'Nice' Region of S-PCSI Diagram and have to be considered as strategic quality characteristics. The results of this study is expected to give some helps in establishing a customer tailored quality strategy.

Energy Dissipation Capacity of the T-stub Fastened by SMA bars (SMA 강봉으로 체결된 T-stub의 에너지소산능력)

  • Yang, Jae Guen;Baek, Min Chang;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.231-240
    • /
    • 2014
  • The T-stub subjected to an axial tensile force shows various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of the T-stub, and the material properties of the T-stub and fastener. Due to the influence of these changes, the T-stub shows three failure modes: plastic failure after the flexural yielding of the T-stub flange, flexural yielding of the T-stub fillet, and fracture of the fastener. In general, a T-stub with a thin flange and where the gauge distance of the fastener is long has a larger energy dissipation capacity than a T-stub with a thick flange and where the gauge distance of the fastener is short, due to the plastic deformation after flexural yielding. In this study, three-dimensional nonlinear finite element analysis was carried out to determine the effect of the fastener used for fastening the T-stub on the energy dissipation capacity of the T-stub. For the fastener of the T-stub analysis model, F10T-M20 high-tension bolts and ${\varnothing}19.05-mm$ (3/4-inch) SMA bars were modeled, and the geometric shape of the T-stub was selected to represent the flexural yielding of the T-stub fillet and the axial tensile failure of the fastener.

Comparative Study of the Discrimination of Uni-variate Analysis and Multi-variate Analysis for Small-Business Firm's Fail Prediction (중소기업 부실예측을 위한 단일변량분석과 다변량분석의 판별력 비교에 관한 연구)

  • Moon, Jong-Geon;Ha, Kyu- Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4881-4894
    • /
    • 2014
  • This study selected 83 manufacturing firms that had been delisted from the KOSDAQ market from 2009 to 2012 and the sample firms for the two-paired sampling method were compared with 83 normal firms running businesses with same items or in same industry. The 75 financial ratios for five years immediately before delisting were used for Mean Difference Analysis with those of normal firms. Fifteen variables assumed to be significant variables for five consecutive years out of the analysis were used to in the Dichotomous Classification Technique, Logistic Regression Analysis and Discriminant Analysis. As a result of those three analyses, the Logistic Regression Analysis model was found to show the greatest discrimination. This study is differentiated from previous studies as it assumed that the firm's failure proceeded slowly over long period of time and it tried to predict the firm's failure earlier using the five years' historical data immediately before failure, whereas previous studies predicted it using three years' data only. This study is also differentiated from the proceeding comparative studies by its statistically complex Multi-Variate Analysis and Dichotomous Classification Analysis, which general stakeholders can easily approach.

A new approach to design isolation valve system to prevent unexpected water quality failures (수질사고 예방형 상수도 관망 밸브 시스템 설계)

  • Park, Kyeongjin;Shin, Geumchae;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1211-1222
    • /
    • 2022
  • Abnormal condition inevitably occurs during operation of water distribution system (WDS) and requires the isolation of certain areas using isolation valves. In general, the determination of the optimal location of isolation valves considered minimization of hydraulic failures as isolation of certain areas causes a change in hydraulic states (e.g., flow direction, velocity, pressure, etc.). Water quality failure can also be induced by changes in hydraulics, which have not been considered for isolation valve system design. Therefore, this study proposes a new isolation valve system design methodology to prevent unexpected water quality failure events. The new methodology considers flow direction change ratio (FDCR), which accounts for flow direction changes after isolation of the area, as a constraint while reliability is used as the objective function. The optimal design model has been applied to a synthetic grid network and the results are compared with the traditional design approach. Results show that considering FDCR can eliminate flow direction changes while average pressure and coefficient of variation of pressure, velocity, and hydraulic geodesic index (HGI) outperform compared to the traditional design approach. The proposed methodology is expected to be a useful approach to minimizing unexpected consequences by traditional design approaches.

Study on Improving Learning Speed of Artificial Neural Network Model for Ammunition Stockpile Reliability Classification (저장탄약 신뢰성분류 인공신경망모델의 학습속도 향상에 관한 연구)

  • Lee, Dong-Nyok;Yoon, Keun-Sig;Noh, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.374-382
    • /
    • 2020
  • The purpose of this study is to improve the learning speed of an ammunition stockpile reliability classification artificial neural network model by proposing a normalization method that reduces the number of input variables based on the characteristic of Ammunition Stockpile Reliability Program (ASRP) data without loss of classification performance. Ammunition's performance requirements are specified in the Korea Defense Specification (KDS) and Ammunition Stockpile reliability Test Procedure (ASTP). Based on the characteristic of the ASRP data, input variables can be normalized to estimate the lot percent nonconforming or failure rate. To maintain the unitary hypercube condition of the input variables, min-max normalization method is also used. Area Under the ROC Curve (AUC) of general min-max normalization and proposed 2-step normalization is over 0.95 and speed-up for marching learning based on ASRP field data is improved 1.74 ~ 1.99 times depending on the numbers of training data and of hidden layer's node.